
METRIC SPACES AND COMPLEX ANALYSIS.

KEVIN MCGERTY.

1. Introduction

In Prelims you studied Analysis, the rigorous theory of calculus for (real-valued)
functions of a single real variable. This term we will largely focus on the study
of functions of a complex variable, but we will begin by seeing how much of the
theory developed last year can in fact can be made to work, with relatively little
extra effort, in a significantly more general context.

Recall the trajectory of the Prelims Analysis course – initially it focused on
sequences and developed the notion of the limit of a sequence which was crucial for
essentially everything which followed1. Then it moved to the study of continuity
and differentiability, and finally it developed a theory of integration. This term’s
course will follow approximately the same pattern, but the contexts we work in will
vary a bit more. To begin with we will focus on limits and continuity, and attempt
to gain a better understanding of what is needed in order for make sense of these
notions.

Example 1.1. Consider for example one of the key definitions of Prelims analysis,
that of the continuity of a function. Recall that if f : R→ R is a function, we say
that f is continuous at a ∈ R if, for any ε > 0, we can find a δ > 0 such that if
|x − a| < δ then |f(x) − f(a)| < ε. Stated somewhat more informally, this means
that no matter how small an ε we are given, we can ensure f(x) is within distance
ε of f(a) provided we demand x is sufficiently close to – that is, within distance δ
of – the point a.

Now consider what it is about real numbers that we need in order for this defin-
tion to make sense: Really we just need, for any pair of real numbers x1 and x2, a
measure of the distance between them. (Note that we need this notion of distance
in the definition of continuity both for (x1, x2) = (x, a) and (x1, x2) = (f(x), f(a)).)
Thus we should be able to talk about continuous functions f : X → X on any set
X provided it is equipped with a notion of distance. In order to make this precise,
we will therefore need to give a mathematically rigorous defintion of what a “notion
of distance” on a set should be.

As a first step, consider as an example the case of Rn. The dot product on
vectors in Rn gives us a notion of distance between vectors in Rn: Recall that if
v = (v1, . . . , vn), w = (w1, . . . , wn) are vectors in Rn then we set

〈v, w〉 =

n∑
i=1

viwi,

Date: August, 2016.
1Although continuity is introduced via εs and δs, the notion can be expressed in terms of

convergent sequences. Similarly one can define the integral in terms of convergent sequences.
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and we define the length of a vector to be2 ‖v‖ = 〈v, v〉1/2. Recall that the Cauchy-
Schwarz inequality then says that |〈v, w〉| ≤ ‖v‖‖w‖. It has the following important
consequence for the length function:

Lemma 1.2. If x, y ∈ Rn then ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof. Since ‖v‖ ≥ 0 for all v ∈ Rn the desired inequality is equivalent to

‖x+ y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2.

But since ‖x + y‖2 = 〈x + y, x + y〉 = ‖x‖2 + 2〈x, y〉 + ‖y‖2, this inequality is
immediate from the Cauchy-Schwarz inequality. �

Once we have a notion of length for vectors, we also immediately have a way of
defining the distance between them – we simply take the length of the vector v−w.
Explicitly, this is:

‖v − w‖ =
( n∑
i=1

(vi − wi)2
)1/2

.

Now that we have defined the distance between any two vectors in Rn, we can
immediately make sense both of what it means for a function f : Rn → R to be
continuous3 as above and also what it means for a sequence to converge.

Definition 1.3. If (vk)k∈N is a sequence of vectors in Rn (so vk = (vk1 , . . . , v
k
n)) we

say (vk)k∈N converges to w ∈ Rn if for any ε > 0 there is an N > 0 such that for
all k ≥ N we have ‖vk − w‖ < ε.

If f : Rn → R and a ∈ Rn then we say that f is continuous at a if for any ε > 0
there is a δ > 0 such that |f(a) − f(x)| < ε whenever ‖x − a‖ < δ. (As usual, we
say that f is continuous on Rn if it is continuous at every a ∈ Rn.)

Many of the results about convergence for sequences of real or complex numbers
which were established last year readily extend to sequences in Rn, with almost
identical proofs. As an example, just as for sequences of real or complex numbers,
we have the following:

Lemma 1.4. Suppose that (vk)k≥1 is a sequence in Rn which converges to w ∈ Rn
and also to u ∈ Rn. Then w = u, that is, limits are unique.

Proof. We prove this by contradiction: suppose w 6= u. Then d = ‖w − u‖ > 0, so
since (vk) converges to w we can find an N1 ∈ N such that for all k ≥ N we have
‖w − vk‖ < d/2. Similarly, since (vk) converges to u we can find an N2 such that
for all k ≥ N2 we have ‖vk − u‖ < d/2. But then if k ≥ max{N1, N2} we have

d = ‖w − u‖ = ‖(w − vk) + (vk − u)‖ ≤ ‖w − vk‖+ ‖vk − u‖ < d/2 + d/2 = d,

where in the first inequality we use Lemma 1.2. Thus we have a contradiction as
required. �

2Sometimes the notation ‖v‖2 is used for this length function – we will see later there are other

natural choices for the length of a vector in Rn.
3More ambitiously, using the notions of distance we have for Rn and Rm you can readily make

sense of the notion of continuity for a function g : Rn → Rm.
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2. Metric Spaces

We now come to the definition of a metric space. To motivate it, let’s consider
what a notion of distance on a set X should mean: Given any two points in X,
we should have a non-negative real number – the distance between them. Thus a
distance on a set X should therefore be a function d : X ×X → R≥0, but we must
also decide what properties of such a function capture our intuition of distance.
A couple of properties suggest themselves immediately – the distance between two
points x, y ∈ X should be symmetric, that is, the distance from x to y should4 be
the same as the distance from y to x, and the distance between two points should
be 0 precisely when they are equal. Note that this latter property was one of the
crucial ingredients in the proof of the uniqueness of limits as we just saw. The last
requirement we make of a distance function is known as the “triangle inequality”,
a version of which we established in Lemma 1.2 and which was also essential in the
above uniqueness proof. These requirements yield in the following definition:

Definition 2.1. Let X be a set and suppose that d : X × X → R≥0. Then we
say that d is a distance function on X if it has the following properties: For all
x, y, z ∈ X:

(1) (Positivity): d(x, y) = 0 if and only if x = y.
(2) (Symmetry): d(x, y) = d(y, x).
(3) (Triangle inequality): If x, y, z ∈ X then we have

d(x, z) ≤ d(x, y) + d(y, z).

Note that for the normal distance function in the plane R2, the third property
expresses the fact that the length of a side of a triangle is at most the sum of the
lengths of the other two sides (hence the name!). We will write a metric space as a
pair (X, d) of a set and a distance function d : X ×X → R≥0 satisfying the axioms
above. If the distance function is clear from context, we may, for convenience,
simply write X rather than (X, d).

Example 2.2. The vector space Rn equipped with the distance function d2(v, w) =
‖v−w‖ = 〈v−w, v−w〉1/2 is a metric space: The first two properties of the metric
d2 are immediate from the definition, while the triangle inequality follows from
Lemma 1.2.

Remark 2.3. In Prelims Linear Algebra, you met the notion of an inner product
space (V, 〈−,−〉) (over the real or complex numbers). For any two vectors v, w ∈ V
setting d(v, w) = ‖v−w‖, where ‖v‖ = 〈v, v〉1/2, gives V a notion of distance. Since
the Cauchy-Schwarz inequality holds in any inner product space, Lemma 1.2 holds
in any inner product space (the proof is word for word the same), it follows that d
is also a metric in this more general setting.

To make good our earlier assertion, we now define the notions of continuity and
convergence in a metric space.

Definition 2.4. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y
is said to be continuous at a ∈ X if for any ε > 0 there is a δ > 0 such that for any

4In fact it’s possible to think of contexts where this assumption doesn’t hold – think of swim-
ming in a river – going upstream is harder work than going downstream, so if your notion of

distance took this into account it would fail to be symmetric.
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x ∈ X with dX(a, x) < δ we have dY (f(x), f(a)) < ε. We say f is continuous if it
is continuous at every a ∈ X.

If (xn)n≥1 is a sequence in X, and a ∈ X, then we say (xn)n≥1 converges to a
if, for any ε > 0 there is an N ∈ N such that for all n ≥ N we have dX(xn, a) < ε.

In fact it is clear that the notion of uniform continuity also extends to functions
between metric spaces: A function f : X → Y is said to be uniformly continuous if,
for any ε > 0, there exists a δ > 0 such that for all x1, x2 ∈ X with dX(x1, x2) < δ
we have dY (f(x1), f(x2)) < ε.

The next result is the natural generalization of the theorem you saw last year
which showed that continuity could be expressed in terms of convergent sequences.
You should note that the proof is, mutatis mutandi, the same as the case for function
from the real line to itself.

Lemma 2.5. Let f : X → Y be a function. Then f is continuous at a ∈ X if
and only if for every sequence (xn)n≥0 converging to a we have f(xn) → f(a) as
n→∞.

Proof. Suppose that f is continuous at a. Then given ε > 0 there is a δ > 0 such
that for all x ∈ X with d(x, a) < δ we have d(f(x), f(a)) < ε. Now if (xn)n≥0 is a
sequence tending to a then there is an N > 0 such that d(a, xn) < δ for all k ≥ N .
But then for all k ≥ N we see that d(f(a), f(xn)) < ε, so that f(xn) → f(a) as
n→∞ as required.

For the converse, we use the contrapositive, hence we suppose that f is not
continuous at w. Then there is an ε > 0 such that for all δ > 0 there is some x ∈ X
with d(x, a) < δ and d(f(x), f(a)) ≥ ε. Chose for each n ∈ Z>0 a point xn ∈ X
with d(xn, a) < 1/n but d(f(xn), f(a)) ≥ ε. Then d(xn, a) < 1/n→ 0 as n→∞ so
that xn → a as n → ∞, but since d(f(xn), f(a))) ≥ ε for all n clearly (f(xn))n≥0

does not tend to f(a). �

Definition 2.6. IfX is a metric space we write C(X) = {f : X → R : f is continuous}
for the set of continuous real-valued functions on X. (Here the real line is viewed
as a metric space equipped with the metric coming from the absolute value).

Lemma 2.7. The set C(X) is a vector space. Moreover if f, g ∈ C(X) then so is
f.g.

Proof. This is just algebra of limits: Let us check that C(X) is closed under mul-
tiplication: Suppose that f, g ∈ C(X) and a ∈ X. To see that f.g is continuous
at a, note that if ε > 0 is given, then since both f and g are continuous at a, we
may find a δ1 such that |f(x)− f(a)| < min{1, ε/2(|g(a)|+ 1)} for all x ∈ X with
d(x, a) < δ1 and a δ2 > 0 such that |g(x)−g(a)| < ε/2(|f(a)|+1) for all x ∈ X with
d(x, a) < δ2. Setting δ = min{δ1, δ2} it follows that for all x ∈ X with d(x, a) < δ
we have

|f(x)g(x)− f(a)g(a)| = |f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)|
≤ |f(x)||g(x)− g(a)|+ |f(x)− f(a)||g(a)|
≤ (|f(a)|+ 1)|g(x)− g(a)|+ |f(x)− f(a)||g(a)|
< ε/2 + ε/2 = ε

where in the third line we use the fact that |f(x)| < |f(a)|+1 for all x ∈ X such that
d(x, a) < δ1. Since a was arbitrary, this shows that f.g lies in C(X). Since constant
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functions are clearly continuous this shows in particular that C(X) is closed under
multiplication by scalars. We leave it as an exercise to check that C(X) is closed
under addition and hence is a vector space. �

Remark 2.8. One can also check that if f : X → R is continuous at a and f(a) 6= 0
then 1/f is continuous at a. Again this is proved just as in the single-variable case.

Example 2.9. Consider the case of Rn again. The distance function d2 coming
from the dot product makes Rn into a metric space, as we have already seen. On
the other hand it is not the only reasonable notion of distance one can take. We
can define for v, w ∈ Rn

d1(v, w) =

n∑
i=1

|vi − wi|;

d2(v, w) =
( n∑
i=1

(vi − wi)2
)1/2

d∞(v, w) = max
i∈{1,2,...,n}

|vi − wi|.

Each of these functions clearly satisfies the positivity and symmetry properties of
a metric. We have already checked the triangle inequality for d2, while for d1 and
d∞ it follows readily from the triangle inequality for R.

Example 2.10. Suppose that (X, d) is a metric space and let Y be a subset of X.
Then the restriction of d to Y × Y gives Y a metric so that (Y, d|Y×Y ) is a metric

space. We call Y equipped with this metric a subspace5 of X.

Example 2.11. The discrete metric on a set X is defined as follows:

d(x, y) =

{
1, if x 6= y
0, if x = y

The axioms for a distance function are easy to check.

Example 2.12. A slightly more interesting example is the Hamming distance on
words: if A is a finite set which we think of as an “alphabet”, then a word of length
n in just an element of An, that is, a sequence of n elements in the alphabet. The
Hamming distance between two such words a = (a1, . . . , an),b = (b1, . . . , bn) is

dH(a,b) = |{i ∈ {1, 2, . . . , n} : ai 6= bi}.

Problem sheet 1 asks you to check that d is indeed a distance function (where the
only axiom which requires some thought is the triangle inequality).

An important special case of this is the space of binary sequences of length n,
that is, where the alphabet A is just {0, 1}. In this case one can view set of words
of length n in this alphabet as a subset of Rn, and moreover you can check that
the Hamming distance function is the same as the subspace metric induced by the
d1 metric on Rn given above.

5This is completely standard terminology, though it’s a little unfortunate if X is a vector space,
where we use the word subspace to mean linear subspace also. Context (usually) makes it clear

which meaning is intended, and I’ll try and be as clear about this as possible!
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Example 2.13. If (X, d) is a metric space, then we can consider the space XN of
all sequences in X. That is, the elements of XN are sequences (xn)n≥1 in X. While
there is no obvious metric on the whole space of sequences, if we take XN

b to be
the space of bounded sequences, that is, sequences such that the set {d∞(xn, xm) :
n,m ∈ N} ⊂ R is bounded, then the function6

d∞((xn)n≥1, (yn)n≥1) = sup
n∈N

d(xn, yn),

is a metric on XN
b . It clearly satisfies positivity and symmetry, and the triangle

inequality follows from the inequality

d(xn, zn) ≤ d(xn, yn) + d(yn, zn) ≤ d∞((xn), (yn)) + d∞((yn), (zn)),

by taking the supremum of the left-hand side over n ∈ N.

Example 2.14. If (X, dX) and (Y, dY ) are metric spaces, then it is natural to try
to make X × Y into a metric space. In fact this can be done in a number of ways
– we will return to this issue later. One method is to set dX×Y = max{dX , dY },
that is if x1, x2 ∈ X and y1, y2 ∈ Y then we set

dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.

It is straight-forward to check that this is indeed a metric on X ×Y . It is also easy
to see that if f : Z → X × Y is a function from a metric space Z to X × Y , so
that we may write f(z) = (fX(z), fY (z)) with fX(z) ∈ X and fY (z) ∈ Y , then f
is continuous if and only if fX and fY are both continuous.

Example 2.15. Consider the set P(Rn) of lines in Rn (that is, one-dimensional
subspace of Rn, or lines through the origin). A natural way to define a distance on
this set is to take, for lines L1, L2, the distance between L1 and L2 to be

d(L1, L2) =

√
1− |〈v, w〉|

2

‖v‖2‖w‖2
,

where v and w are any non-zero vectors in L1 and L2 respectively. It is easy to
see this is independent of the choice of vectors v and w. The Cauchy-Schwarz
inequality ensures that d is well-defined, and moreover the criterion for equality
in that inequality ensures positivity. The symmetry property is evident, while the
triangle inequality is left as an exercise.

It is useful to think of the case when n = 2 here, that is, the case of lines through
the origin in the plane R2. The distance between two such lines given by the above
formula is then sin(θ) where θ is the angle between the two lines.

3. Normed vector spaces.

We have already seen a number of metrics on the vector space Rn:

6The fact that the sequences are bounded ensure the right-hand side is finite.
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d1(x, y) =

m∑
i=1

|xi − yi|

d2(x, y) =
( m∑
i=1

(xi − yi)2
)1/2

d∞(x, y) = max
1≤i≤m

|xi − yi|.

These metrics all interact with the vector space structure7 of Rn in a nice way:
if d is any of these metrics, then for any vectors x, y, z ∈ Rn and any scalar λ we
have

d(x+ z, y + z) = d(x, y), d(λx, λy) = |λ|d(x, y).

The first of these is known as translation invariance (the second is denied its own
terminology).

A vector space V with a distance function compatible with the vector space
structure is clearly determined by the function from V to the non-negative real
numbers given by v 7→ d(v, 0).

Definition 3.1. Let V be a (real or complex) vector space. A norm on V is a
function ‖.‖ : V → R≥0 which satisfies the following properties:

(1) (Positivity): ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 if and only if x = 0.
(2) (compatibility with scalar multiplication): if x ∈ V and λ is a scalar then

‖λ.x‖ = |λ|‖x‖.

(3) (Triangle inequality): If x, y ∈ V then ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Note that in the second property |λ| denotes the absolute value of λ if V is a real
vector space, and the modulus of λ if V is a complex vector space.

Remark 3.2. If there is the potential for ambiguity, we will write the norm on a
vector space as ‖.‖V , but normally this is clear from the context, and so just as for
metric spaces we will write ‖.‖ for the norm on all vector spaces we consider.

Lemma 3.3. If V is a vector space with a norm ‖.‖ then the function d : V ×V →
R≥0 given by d(x, y) = ‖x−y‖ is a metric which is compatible with the vector space
structure in that:

(1) For all x, y ∈ V we have

d(λ.x, λ.y) = |λ|d(x, y).

(2) d(x+ z, y + z) = d(x, y).

Conversely, if d is a metric satisfying the above conditions then ‖v‖ = d(v, 0) is a
norm on V .

Proof. This follows immediately from the definitions. �

Example 3.4. As discussed above, if V = Rn then the metrics d1, d2, d∞ all come
from the norms. We denote these by ‖x‖1 =

∑m
i=1 |xi| and ‖x‖2 = (

∑m
i=1 x

2
i )

1/2

and ‖x‖∞ = max1≤i≤m |xi|.

7That is, vector addition and scalar multiplication.
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Since the most natural maps between vector spaces are linear maps, it is natural
to ask when a linear map between normed vector spaces is continuous. The following
lemma gives an answer to this question:

Lemma 3.5. Let f : V →W be a linear map between normed vector spaces. Then
f is continuous if and only if {‖f(x)‖ : ‖x‖ ≤ 1} is bounded.

Proof. If f is continuous, then it is continuous at 0 ∈ V and so there is a δ > 0
such that for all v ∈ V with ‖v‖ < δ we have ‖f(v)−f(0)‖ = ‖f(v)‖ < ε. But then
if ‖v‖ ≤ 1 we have δ

2‖f(v)‖ = ‖f( δ2 .v))‖ < ε, and hence ‖f(v)‖ ≤ 2ε
δ .

For the converse, if we have ‖f(v)‖ < M for all v with ‖v‖ ≤ 1, then if ε > 0 is
given we may pick δ > 0 so that δ.M < ε and hence if ‖v − w‖ < δ we have

‖f(v)− f(w)‖ = ‖f(v − w)‖ = δ‖f(δ−1(v − w))‖ ≤ δ.M < ε,

so that f is in fact uniformly continuous on V . �

An important source of (normed) vector spaces for us will be the space of func-
tions on a set X (usually a metric space). Indeed if X is any set, the space of all
real-valued functions on X is a vector space – addition and scalar multiplication
are defined “pointwise” just as for functions on the real line. It is not obvious how
to make this into a normed vector space, but if we restrict to the subspace B(X)
of bounded functions there is an reasonably natural choice of norm.

Definition 3.6. If X is any set we define

B(X) = {f : X → R : f(X) ⊂ R bounded},

to be the space of bounded functions on X, that is f ∈ B(X) if and only if there
is some K > 0 such that |f(x)| < K for all x ∈ X. For f ∈ B(X) we set
‖f‖∞ = supx∈X |f(x)|.

Lemma 3.7. Let X be any set, then (B(X), ‖.‖∞) is a normed vector space.

Proof. To see that B(X) is a vector space, note that if f, g ∈ B(X) then we may find
N1, N2 ∈ R>0 such that f(X) ⊆ [−N1, N1] and g(X) ⊆ [−N2, N2]. But then clearly
(f + g)(X) ⊆ [−N1 −N2, N1 +N2] and if λ ∈ R then (λ.f)(X) ⊆ [−|λ|N1, |λ|N1],
so that λ.f ∈ B(X) and f + g ∈ B(X).

Next we check that ‖f‖∞ is a norm: it is clear from the definition that ‖f‖∞ ≥ 0
with equality if and only if f is identically zero. Compatibility with scalar multipli-
cation is also immediate, while for the triangle inequality note that if f, g ∈ B(X),
then for all x ∈ X we have

|(f + g)(x)| = |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞.

Taking the supremum over x ∈ X then yields the result. �

We will write d∞ for the metric associated to the norm ‖.‖∞.
If X is itself a metric space, we also have the space C(X) of continuous real-

valued functions on X. While C(X) does not automatically have a norm, the
subspace Cb(X) = C(X) ∩ B(X) of bounded continuous functions clearly inherits a
norm from B(X).
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Notice that if X = [a, b] then the if (fn)n≥1 is a sequence in8 C([a, b]) = Cb([a, b])
then fn → f in (Cb(X), d∞) (where d∞ is the metric given by the norm ‖.‖∞) if
and only if fn tends to f uniformly.

Example 3.8. For certain spaces X, we can define other natural metrics on the
space of continuous functions: Let X = [a, b] ⊂ R be a closed interval. Then we
know that in fact all continuous functions on X are bounded, so that ‖.‖∞ defines
a norm on C([a, b]). We can also define analogues of the norms ‖.‖1 and ‖.‖2 on Rn
using the integral in place of summation: Let

‖f‖1 =

∫ b

a

|f(t)|dt,

‖f‖2 =
( ∫ b

a

f(t)2dt
)1/2

Lemma 3.9. Suppose that a < b so that the interval [a, b] has positive length. Then
the functions ‖.‖1 and ‖.‖2 are norms on C([a, b]).

Proof. The compatibility with scalars and the triangle inequality both follow from
standard properties of the integral. The interesting point to check here is that
both ‖.‖1 and ‖.‖2 satisfy postitivity – continuity9 is crucial for this! Indeed if
f = 0 clearly ‖f‖1 = ‖f‖2 = 0. On the other hand if f 6= 0 then there is some
x0 ∈ [a, b] such that f(x0) 6= 0, and so |f(x0)| > 0. Since f is continuous at
x0, there is a δ > 0 such that |f(x) − f(x0)| < |f(x0)|/2 for all x ∈ [a, b] with
|x − x0| < δ. But the it follows that for x ∈ [a, b] with |x − x0| < δ we have
|f(x)| ≥ |f(x0)| − |f(x)− f(x0)| > |f(x0)|/2. Now set

s(x) =

{
|f(x0)|/2, if x ∈ [a, b] ∩ (x0 − δ, x0 + δ)

0, otherwise

Since the interval [a, b] ∩ (x0 − δ, x0 + δ) has length at least d = min{δ, (b − a)}
we see that

∫ b
a
s(x)dx ≥ d.|f(x0)|/2 > 0. Since s(x) ≤ |f(x)| for all x ∈ [a, b] it

follows from the positivity of the integral that 0 < d|f(x0)|/2 ≤ ‖f‖1. Similarly

we see that ‖f‖2 ≥ f
√
d|f(x0)|/2, so that both ‖.‖1 and ‖.‖2 satisfy the positivity

property. �

There are very similar metrics on certain sequence spaces:

Example 3.10. Let

`1 = {(xn)n≥1 :
∑
n≥1

|xn| <∞}

`2 = {(xn)n≥1 :
∑
n≥1

x2
n <∞}

`∞{(xn)n≥1 : sup
n∈N
|xn| <∞}.

The sets `1, `2, `∞ are all real vector spaces, and moreover the functions ‖(xn)‖1 =∑
n≥1 |xn|, ‖(xn)‖2 =

(∑
n≥1 x

2
n

)1/2
, ‖(xn)‖∞ = supn∈N |xn| define norms on `1, `2

8The result from Prelims Analysis showing any continuous function on a closed bounded in-

terval is bounded implies the equality C([a, b]) = Cb([a, b]).
9So in particular, ‖.‖1 and ‖.‖2 are not norms on the space of Riemann integrable functions

on [a, b].
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and `∞ respectively. Note that `2 is in fact an inner product space where

〈(xn), (yn)〉 =
∑
n≥1

xnyn,

(the fact that the right-hand side converges if (xn) and (yn) are in `2 follows from
the Cauchy-Schwarz inequality).

Lemma 3.11. There is a continuous injective map h : `∞ → `2 given by (xn) 7→
(xn/n). Moreover, the inclusion map i : `2 → `∞ is also continuous.

Proof. If (xn) ∈ `∞ then we have supn∈N |xn| = ‖(xn)‖∞ <∞, and so

‖h((xn))‖2 =
∑
n≥0

(xn/n)2 ≤ ‖(xn)‖∞
∑
n≥1

1

n2
= ‖(xn)‖∞

π2

6
.

Since h is a linear map it follows from Lemma 3.5 that h is continuous. For the
inclusion map, note that for each n we have

|xn| ≤
(∑
k≥1

x2
n

)1/2
= ‖(xn)‖2,

so that taking the supremum over all n we find ‖(xn)‖∞ ≤ ‖(xn)‖2, hence the
inclusion map is continuous, again by Lemma 3.5. �

4. Metrics and convergence

Recall that if (X, d) is a metric space, then a sequence (xn) in X converges to
a point a ∈ X if for any ε > 0 there is an N ∈ N such that for all n ≥ N we
have d(xn, a) < ε. In the case of Rm, although d1, d2, d∞ are all different distance
functions, they in fact give the same notion of convergence. To see this we need
the following:

Lemma 4.1. Let x, y ∈ Rm. Then we have

d2(x, y) ≤ d1(x, y) ≤
√
md2(x, y); d∞(x, y) ≤ d2(x, y) ≤

√
md∞(x, y).

Proof. It is enough to check the corresponding inequalities for the norms ‖x‖i
(where i ∈ {1, 2,∞}) that is, we may assume y = 0. For the first inequality,
note that

‖x‖21 = (

m∑
i=1

|xi|)2 =

m∑
i=1

x2
i +

∑
1≤i<j≤m

2|xixj | ≥
m∑
i=1

x2
i = ‖x‖22,

so that ‖x‖2 ≤ ‖x‖1. On the other hand, if x = (x1, . . . , xm), set a = (|x1|, |x2|, . . . , |xm|)
and 1 = (1, 1, . . . , 1). Then by the Cauchy-Schwarz inequality we have

‖x‖1 = 〈1, a〉 ≤
√
m.‖a‖2 =

√
m.‖x‖2

The second pair of inequalities is simpler. Note that clearly

max
1≤i≤m

|xi| = max
1≤i≤m

(x2
i )

1/2 ≤ (

m∑
i=1

x2
i )

1/2,

yielding one inequality. On the other hand, since for each i we have |xi| ≤ ‖x‖∞
by definition, clearly

‖x‖22 =

m∑
i=1

|xi|2 ≤ m‖x‖2∞,
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giving ‖x‖2/
√
m ≤ ‖x‖∞ as required. �

Lemma 4.2. If (xn) ⊂ Rm is a sequence then (xn) converges to a ∈ Rm with
respect to the metric d2, if and only if it does with respect to the metric d1, if and
only if it does so with respect to the metric d∞.

Proof. Suppose (xn) converges to a with respect to the metric d2. Then for any
ε > 0 there is an N ∈ N such that d2(xn, a) < ε/

√
m for all n ≥ N . It follows from

the previous Lemma that for n ≥ N we have

d1(xn, a) ≤
√
m.d2(xn, a) <

√
m.(ε/

√
m) = ε,

and so (xn) converges to a with respect to d1 also. Similarly we see that convergence
with respect to d1 implies convergence with respect to d2 using ‖x‖2 ≤ ‖x‖1. In
the same fashion, the inequalities d∞(x, y) ≤ d2(x, y) ≤

√
md∞(x, y) yield the

equivalence of the notions of convergence for d2 and d∞. �

Of course the same argument, using the inequalities relating any two of the
metrics d1, d2, d∞, show that a sequence in Rm converges with respect to any one
of these metrics if and only if it converges with respect to all of them. Thus we
have:

Corollary 4.3. The notions of convergence given the metrics d1, d2, d∞ on Rm all
coincide.

Remark 4.4. (Non-examinable): If X is any set and d1, d2 are two metrics on X,
we say they are equivalent if there are positive constants K,L such that

d1(x, y) ≤ Kd2(x, y); d2(x, y) ≤ Ld1(x, y).

The proof of the previous Lemma extends to show that if two metrics are equivalent,
then a sequence converges with respect to one metric if and only if it does with respect
to the other.

In the problem sets you are asked to investigate which (if any) of the metrics
d1, d2, d∞ for C[a, b] the space of continuous real-valued functions on the closed
interval [a, b] define the same notion of convergence.

5. Open and closed sets

In this section we will define two special classes of subsets of a metric space –
the open and closed subsets. To motivate their definition, recall that we have two
ways of characterizing continuity in a metric space: the “ε-δ” definition, and the
description in terms of convergent sequences. The former will lead us to the notion
of an open set, while the latter to the notion of a limit point and hence that of a
closed set.

The definitions of continuity and convergence can be made somewhat more geo-
metric if we introduce the notion of a ball in a metric space:

Definition 5.1. Let (X, d) is a metric space. If x0 ∈ X and ε > 0 then we define
the open ball of radius ε to be the set

B(x0, ε) = {x ∈ X : d(x, x0) < ε}.
Similarly we defined the closed ball of radius ε about x0 to be the set

B̄(x0, ε) = {x ∈ X : d(x, x0) ≤ ε}.
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The term “ball” comes from the case where X = R3 equipped with the usual Eu-
clidean notion of distance. When X = R an open/closed ball is just an open/closed
interval.

Recall that if f : X → Y is a function between any two sets, then given any
subset Z ⊆ Y we let10 f−1(Z) = {x ∈ X : f(x) ∈ Z}. The set f−1(Z) is called the
pre-image of Z under the function f .

Lemma 5.2. Let (X, d) and (Y, d) be metric spaces. Then f : X → Y is continuous
at a ∈ X if and only if, for any open ball B(f(a), ε) centred at f(a) there is an
open ball B(a, δ) centred at a such that f(B(a, δ)) ⊆ B(f(a), ε), or equivalently
B(a, δ) ⊆ f−1(B(f(a), ε)).

Proof. This follows directly from the definitions. (Check this! ) �

We have seen in the last section that different metrics on a set X can give the
same notions of continuity. The next definition is motivated by this – it turns out
that we can attach to a metric a certain class of subsets of X known as open sets and
knowing these open sets suffices to determine which functions on X are continuous.
Informally, a subset U ⊆ X is open if, for any point y ∈ U , every point sufficiently
close to y in X is also in U . Thus, if y ∈ U , it has some “wiggle room” – we may
move slightly away from y while still remaining in U . The rigorous definition is as
follows:

Definition 5.3. If (X, d) is a metric space then we say a subset U ⊂ X is open
(or open in X) if for each y ∈ U there is some δ > 0 such that B(y, δ) ⊆ U . More
generally, if Z ⊆ X and z ∈ Z then we say Z is a neighbourhood of z if there is a
δ > 0 such that B(z, δ) ⊆ Z. Thus a subset U ⊆ X is open exactly when it is a
neighbourhood of all of its elements.

The collection T = {U ⊂ X : U open in X} of open sets in a metric space (X, d)
is called the topology of X.

We first note an easy lemma, which can be viewed as a consistency check on our
terminology!

Lemma 5.4. Let (X, d) be a metric space. If a ∈ X and ε > 0 then B(a, ε) is an
open set.

Proof. We need to show that B(a, ε) is a neighbourhood of each of its points. If
x ∈ B(a, ε) then by definition r = ε− d(a, x) > 0. We claim that B(x, r) ⊆ B(a, ε).
Indeed by the triangle inequality we have for z ∈ B(x, r)

d(z, a) ≤ d(z, x) + d(x, a) < r + d(x, a) = ε,

as required. �

Remark 5.5. While reading the above proof, please draw a picture of the case where
X = R2 with the standard metric d2!

Next let us observe some basic properties of open sets.

Lemma 5.6. Let (X, d) be metric space and let T be the associated topology on X.
Then we have

10The notion is not meant to suggest that f is invertible, though when it is, the preimage
of any point in Y is a single point in X, so the notation is in this sense consistent. Note that

formally, f−1 as defined here is a function from the power set of Y to the power set of X.
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(1) If {Ui; i ∈ I} is any collection of open sets, then
⋃
i∈I Ui is an open set. In

particular the empty set ∅ is open in X11

(2) If I is finite and {Ui : i ∈ I} are open sets then
⋂
i∈I Ui is open in X. In

particular X is an open set.

Proof. For the first claim, if x ∈
⋃
i∈ Ui then there is some i ∈ I with x ∈ Ui. Since

Ui is open, there is an ε > 0 such that

B(x, ε) ⊂ Ui ⊆
⋃
i∈I

Ui,

so that
⋃
i∈I Ui is a neighbourhood of each of its points as required. Applying this

to the case I = ∅ shows that ∅ ⊆ X is open (or simply note that the empty set
satisfies the condition to be an open set vacuously).

For the second claim, if I is finite and x ∈
⋂
i∈I Ui, then for each i there is

an εi > 0 such that B(x, εi) ⊆ Ui. But then since I is finite, ε = min({εi : i ∈
I} ∪ {1}) > 0, and

B(x, ε) ⊆
⋂
i∈I

B(x, εi) ⊆
⋂
i∈I

Ui,

so that
⋂
i∈I Ui is an open subset as required. Applying this to the case I = ∅

shows that X is open (or simply note that if U = X and x ∈ X then B(x, ε) ⊆ X
for any positive ε so that X is open). �

Remark 5.7. If you look in many textbooks for the definition of a topology on a set
X, then you will often see the axioms insisting separately that ∅ and X are open,
alongside the conditions that finite intersections and arbitrary unions of open sets
are open. The phrasing of the above Lemma is designed to emphasize that this is
redundant. In practice of course it is normally immediate from the definition of the
topology that both ∅ and X are open, so unfortunately this is not an observation
that saves one much work (and is presumably why the extraneous stipulation is so
common-place in the literature).

Exercise 5.8. Using Lemma 4.1, show that the topologies Ti on Rn given by the
norms di (i = 1, 2,∞) coincide.

Example 5.9. A subset U of R is open if for any x ∈ U there is an open interval
centred at x contained in U . Thus we can readily see that the finiteness condition
for intersections is necessary: if Ui = (−1/i, 1) for i ∈ N then each Ui is open but⋂
i∈N Ui = [0, 1) and [0, 1) is not open because it is not a neighbourhood of 0.

One important consequence of the fact that arbitrary unions of open sets are
open is the following:

Definition 5.10. Let (X, d) be a metric space and let S ⊆ X. The interior of S
is defined to be

int(S) =
⋃
U⊆S
Uopen

U.

11Note that if I is an indexing set, then a collection {Ui : i ∈ I} of subsets of X is just a function

u : I → P(X) where P(X) denotes the power set of X, where we write normally write Ui ⊆ X for

u(i). The union of the collection of subsets {Ui : i ∈ I} is then {x ∈ X : ∃i ∈ I, x ∈ Ui}, while the
intersection of the collection {Ui : i ∈ I} is just {x ∈ X : ∀i ∈ I, x ∈ Ui}. Using this, one readily

sees that if I = ∅ then the intersection of the collection is X and the union is the empty set ∅.
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Since the union of open subsets is always open int(S) is an open subset of X
and it is the largest open subset of X which is contained in S in the sense that
any open subset of X which is contained in S is in fact contained in int(S). If
x ∈ int(S) we say that x is an interior point of S. One can also phrase this in
terms of neighborhoods: the interior of S is the set of all points in S for which S is
a neighbourhood.

Example 5.11. If S = [a, b] is a closed interval in R then its interior is just the
open interval (a, b). If we take S = Q ⊂ R then int(Q) = ∅.

We now show that the topology given by a metric is sufficient to characterize
continuity.

Proposition 5.12. Let X and Y be metric spaces and let f : X → Y be a function.
If a ∈ X then f is continuous at a if and only if for every neighbourhood N ⊆ Y of
f(a), the preimage f−1(N) is a neighbourhood of a ∈ X. Moreover, f is continuous
on all of X if and only if for each open subset U of Y , its preimage f−1(U) is open
in X.

Proof. First suppose that f is continuous at a, and let N be a neighhourhood of
f(a). Then we may find an ε > 0 such that B(f(a), ε) ⊆ N . Since f is continuous at
a, there is a δ > 0 such that B(x, δ) ⊆ f−1(B(f(a), ε)) ⊆ f−1(U). It follows f−1(N)
is a neighbourhood of a as required. Conversely, if ε > 0 is given, then certainly
B(f(a), ε) is a neighbourhood of f(a), so that f−1(B(f(a), ε)) is a neighbourhood
of a, hence there is a δ > 0 such that B(a, δ) ⊆ f−1(B(f(a), ε)), and thus f is
continuous at a as required.

Now if f is continuous on all of X, since a set is open if and only if it is a
neighbourhood of each of its points, it follows from the above that f−1(U) is an
open subset of X for any open subset U of Y . For the converse, note that if a ∈ X
is any point of X and ε > 0 is given then the open ball B(f(a), ε) is an open subset
of Y , hence f−1(B(f(a), ε)) is open in X, and in particular is a neighbourhood of
a ∈ X. But then there is a δ > 0 such that B(a, δ) ⊆ f−1(B(f(a), ε)), hence f is
continuous at a as required.

�

Example 5.13. Notice that this Proposition gives us a way of producing many
examples of open sets: if f : Rn → R is any continuous function and a, b ∈ R are
real numbers with a < b then {v ∈ Rn : a < f(x) < b} = f−1((a, b)) is open in Rn.
Thus for example {(x, y) ∈ R2 : 1 < 2x2 + 3xy < 2} is an open subset of the plane.

Exercise 5.14. Use the characterization of continuity in terms of open sets to
show that the composition of continuous functions is continuous12.

Remark 5.15. The previous Proposition 5.12 shows, perhaps surprisingly, that we
actually need somewhat less than a metric on a set X to understand what continuity
means: we only need the topology induced by the metric on the set X. In particular
any two metrics which give the same topology give the same notion of continuity.
This motivates the following, perhaps rather abstract-seeming, definition.

Definition 5.16. If X is a set, a topology on X is a collection of subsets T of X,
known as the open subsets which satisfy the conclusion of Lemma 5.6. That is,

12This is easy, the point is just to check you see how easy it is!
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(1) If {Ui : i ∈ I} are in T then
⋃
i∈I Ui is in T . In particular ∅ is an open

subset.
(2) If I is finite and {Ui : i ∈ I} are in T , then

⋂
i∈I Ui is in T . In particular

X is an open subset of X.

A topological space is a pair (X, TX) consisting of a set X and a choice of topology
TX on X.

Motivated by Proposition 5.12, if f : X → Y is a function between two topologi-
cal spaces (X, TX) and (Y, TY ) we say that f is continuous if for every open subset
U ∈ TY we have f−1(U) ∈ TX , that is, f−1(U) is an open subset of X.

The properties of a metric space which we can express in terms of open sets
can equally be expressed in terms of their complements, which are known as closed
sets. It is useful to have both formulations (as we will show, the formulation of
continuity in terms of closed sets is closer to that given by convergence of sequences
rather than the ε-δ definition).

Definition 5.17. If (X, d) is a metric space, then a subset F ⊆ X is said to be a
closed subset of X if its complement F c = X\F is an open subset.

Remark 5.18. It is important to note that the property of being closed is not the
property of not being open! In a metric space, it is possible for a subset to be open,
closed, both or neither: In R the set R is open and closed, the set (0, 1) is open and
not closed, the set [0, 1] is closed and not open while the set (0, 1] is neither.

The following lemma follows easily from Lemma 5.6 by using DeMorgan’s Laws.

Lemma 5.19. Let (X, d) be a metric space and let {Fi : i ∈ I} be a collection of
closed subsets.

(1) The intersection
⋂
i∈I Fi is a closed subset. In particular X is a closed

subset of X.
(2) If I is finite then

⋃
i∈I Fi is closed. In particular the empty set ∅ is a closed

subset of X.

Moreover, if f : X → Y is a function between two metric spaces X and Y then f
is continuous if and only if f−1(G) is closed for every closed subset G ⊆ Y .

Proof. The properties of closed sets follow immediately from DeMorgan’s law, while
the characteriszation of continuity follows from the fact that if G ⊂ Y is any subset
of Y we have f−1(Gc) = (f−1(G))c, that is, X\f−1(G) = f−1(Y \G). �

Lemma 5.20. If (X, d) is a metric space then any closed ball B̄(a, r) for r ≥ 0 is
a closed set. In particular, singleton sets are closed.

Proof. We must show that X\B̄(a, r) is open. If y ∈ X\B̄(a, r) then d(a, y) > r,
so that ε = d(a, y)− r > 0. But then if z ∈ B(y, ε) we have

d(a, z) ≥ d(a, y)− d(z, y) > d(a, y)− ε = r,

so that z /∈ B̄(a, r). It follows that B(y, ε) ⊆ X\B̄(a, r) and so X\B̄(a, r) is open
as required. �

The relation between closed sets and convergent sequences mentioned at the
beginning of this section arises through the notion of a limit point which we now
define.
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Definition 5.21. If (X, d) is a metric space and Z ⊆ X is any subset, then we say
a point a ∈ X is a limit point if for any ε > 0 we have

(
B(a, ε)\{a}

)
∩ Z 6= ∅. If

a ∈ Z and a is not a limit point of Z we say that a is an isolated point of Z. The
set of limit points of Z is denoted Z ′. Notice that if Z1 ⊆ Z2 are subsets of X then
it follows immediately from the definition that Z ′1 ⊆ Z ′2.

Example 5.22. If Z = (0, 1]∪{2} ⊂ R then 0 is a limit point of Z which does not
lie in Z, while 2 is an isolated point of Z because B(2, 1/2)∩Z = (1.5, 2.5)∩Z = {2}.

If (xn) is a sequence in (X, d) which converges to ` ∈ X then {xn : n ∈ N} is
either empty or equal to {`}. (See the problem set.)

The term “limit point” is motivated by the following easy result:

Lemma 5.23. If Z is a subset of a metric space (X, d) then x ∈ Z ′ if and only
if there is a sequence in Z\{x} converging to x. In particular, a point y ∈ X lies
in Z̄ if and only if there is a sequence (xn) with xn ∈ Z for all n, and xn → y as
n→∞.

Proof. If x is a limit point then for each n ∈ N we may pick zn ∈ B(x, 1/n) ∩
(Z\{x}). Then clearly zn → x as n → ∞ as required. Conversely if (zn) is a
sequence in Z\{x} converging to x and δ > 0 is given, there is an N ∈ N such
that zn ∈ B(x, δ) for all n ≥ N . It follows that B(x, δ) ∩ (Z\{x}) is nonempty
as required. The final sentence follows immediately once one notes that (xn) is a
sequence in Z and xn → y as n → ∞ then y must be a limit point of Z unless
xn = y for all but finitely many n, in which case y ∈ Z. �

The fact that a subset of a metric space is closed can be characterized in terms
of limit points (and hence in terms of convergent seqeunces):

Lemma 5.24. If (X, d) is a metric space and S ⊆ X then S is closed if and only
if S′ ⊆ S.

Proof. If S is closed then Sc is open and so for all y /∈ S there is a δ > 0 such that
B(y, δ) ⊆ Sc. Thus S∩B(y, δ) = ∅ and so y is not a limit point of S. Hence S′ ⊆ S
as required. On the other hand if S′ ⊆ S then if y /∈ S it follows y is not a limit
point of S so that there is a δ > 0 such that

(
B(y, δ)\{y}

)
∩S = ∅, and since y /∈ S

it follows B(y, δ) ⊆ Sc. It follows that Sc is open and hence S is closed. �

The fact that any intersection of closed subsets is closed has an important con-
sequence – given any subset S of a metric space (X, d) there is a unique smallest
closed set which contains S.

Definition 5.25. Let (X, d) be a metric space and let S ⊆ X. Then the set

S̄ =
⋂
G⊇S

G closed

G,

is the closure of S. It is closed because it is the intersection of closed subsets of
X and is the smallest closed set containing S in the sense that if G is any closed
set containing S then G contains S̄. If S ⊆ Y ⊆ X we say that S is dense in Y if
Y ⊆ S̄. (Thus every point of Y lies in S or is a limit point of S.)

Example 5.26. The rationals Q are a dense subset of R, as is the set { a2n : a ∈
Z, n ∈ N}.
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Definition 5.27. The notions of closure and interior also allow us to define the
boundary ∂S of a subset S of a metric space to be S̄\int(S).

Proposition 5.28. Let (X, d) be a metric space and let Z ⊆ X. Then

Z ∪ Z ′ = Z̄.

Proof. Since Z̄ is closed and Z ⊆ Z̄ so that any limit point of Z is a limit point of
Z̄ we see that Z ′ ⊆ (Z̄)′ ⊂ Z̄. Thus Z ∪ Z ′ ⊆ Z̄. To obtain the reverse inclusion it
suffices to see that Z ∪ Z ′ is closed, since by definition Z̄ is a subset of any closed
set containing Z. Let Y be the complement of Z ∪ Z ′. Then if y ∈ Y since y is
not a limit pont of Z there is a δ > 0 such that B(y, δ) ∩ Z = ∅ (since y /∈ Z by
assumption). But if Z ⊆ B(y, δ)c then Z ′ ⊆ (B(y, δ)c)′ ⊆ B(y, δ)c since B(y, δ)c is
closed. It follows Z ∪Z ′ ⊆ B(y, δ)c so that B(y, δ) ⊆ (Z ∪Z ′)c and hence (Z ∪Z ′)c
is open as required. �

Remark 5.29. If Z ⊆ X is an arbitrary subset you can check that (Z ′)′ ⊆ Z ′, that
is, the limit points of Z ′ are limit points of Z. It then follows from Lemma 5.24
that Z ′ is closed, since it contains its limit points.

Example 5.30. In general, it need not be the case that B̄(a, r) is the closure of

B(a, r). Since we have seen that B̄(a, r) is closed, it is always true that B(a, r) ⊆
B̄(a, r) but the containment can be proper. As a (perhaps silly-seeming) example
take any set X with at least two elements equipped with the discrete metric. Then if
x ∈ X we have {x} = B(x, 1) is an open set consisting of the single point {x}. Since

singletons are always closed we see that B(x, 1) = B(x, 1) = {x}. On the other
hand B̄(x, 1) = X the entire set, which is strictly larger than {x} by assumption.

Remark 5.31. Combining the above characterization of closed sets in terms of limit
points and the characterization of continuity in terms of closed sets we can give yet
another description of continuity for a function f : X → Y between metric spaces:
If Z ⊂ Y is a subset of Y which contains all its limit points then so does f−1(Z).
The problem set asks you to establish a slightly different characterization using the
notion of the closure of a set, namely that a function f : X → Y is continuous if
and only if for any subset Z ⊆ X we have f(Z) ⊆ f(Z). It is easy to relate this to
the definition of continuity in terms of convergent sequences.

6. Subspaces of metric spaces

If (X, d) is a metric space, then as we noted before, any subset Y ⊆ X is
automatically also a metric space since the distance function d : X × X → R≥0

restricts to a distance function on Y . The set Y thus has a topology given by this
metric. In this section we show that this topology is easy to describe in terms of
the topology on X. The key to this description is the simple observation that the
open balls in Y are just the intersection of the open balls in X with Y . For clarity,
for y ∈ Y ⊆ X we will write

BY (y, r) = {z ∈ Y : d(z, y) < r}

for the open ball about y of radius r in Y and

BX(y, r) = {x ∈ X : d(x, y) < r}

for the open ball of radius r about y in X. Thus BY (y, r) = Y ∩BX(y, r).
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Lemma 6.1. If (X, d) is a metric space and Y ⊆ X then a subset U ⊆ Y is an
open subset of Y if and only if there is an open subset V of X such that U = V ∩Y .
Similarly a subset Z ⊆ Y is a closed subset of Y if and only if there is a closed
subset F of X such that Z = F ∩ Y .

Proof. If U = Y ∩ V where V is open in X and y ∈ U then there is a δ > 0 such
that BX(y, δ) ⊆ V . But then BY (y, δ) = BX(y, δ) ∩ Y ⊆ V ∩ Y = U and so U is
a neighhourbood of each of its points as required. On the other hand, if U is an
open subset of Y then for each y ∈ U we may pick an open ball BY (y, δy) ⊆ U .
It follows that U =

⋃
y∈U BY (y, δy). But then if we set V =

⋃
y∈U BX(y, δy) it is

immediate that V is open in X and V ∩ Y = U as required.
The corresponding result for closed sets follows readily: F is closed in Y if and

only if Y \F is open in Y which by the above happens if and only if it equals Y ∩V
for some open set in X. But this is equivalent to T = Y ∩ V c, the intersection of
Y with the closed set V c. �

Remark 6.2. The lemma shows that the topology on X determines the topology
on the subspace Y ⊆ X directly. It is easy to see that if (X, T ) is an abstract
topological space and Y ⊆ X then the collection TY = {U ∩ Y : U ∈ T } is a
topology on Y which is called the subspace topology.

Remark 6.3. It is important here to note that the property of being open or closed
is a relative one – it depends on which metric space you are working in. Thus for
example if (X, d) is a metric space and Y ⊆ X then Y is always open viewed as
a subset of itself (since the whole space is always an open subset) but it of course
need not be an open subset of X! For example, [0, 1] is not open in R but it is an
open subset of itself.

Example 6.4. Let’s consider a more interesting example: Let X = R and let
Y = [0, 1] ∪ [2, 3]. As a subset of Y the set [0, 1] is both open and closed. To see
that it is open, note that if x ∈ [0, 1] then

BY (x, 1/2) = BR(x, 1/2) ∩ Y = (x− 1

2
, x+

1

2
) ∩ ([0, 1] ∪ [2, 3])

= (x− 1

2
, x+

1

2
) ∩ [0, 1] ⊂ [0, 1],

Similarly we see that BY (x, 1/2) ⊆ [2, 3] if x ∈ [2, 3] so that [2, 3] is also open in Y .
It follows [0, 1] is both open and closed in Y (as is [2, 3]).

7. Homeomorphisms and isometries

If (X, d) and (Y, d) are metric spaces it is natural to ask when we wish to consider
X and Y equivalent. There is more than one way to answer this question – the
first, perhaps most obvious one, is the following:

Definition 7.1. A function f : X → Y between metric spaces (X, dX) and (Y, dY )
is said to be an isometry if

dY (f(x), f(y)) = dX(x, y) ∀x, y ∈ X

An isometry is automatically injective. If there is a surjective (and hence bijective)
isometry between two metric spaces X and Y we say that X and Y are isometric.
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Example 7.2. Let X = R2. The collection of all bijective isometries from X
to itself forms a group, the isometry group of the plane. Clearly the translations
tv : R2 → R2 are isometries, where v ∈ R2 and tv(x) = x + v. Similarly, if A ∈
Mat2(R) is an orthogonal matrix, so that AtA = I, then x 7→ Ax is an isometry:
since d2(Ax,Ay) = ‖A(x)−A(y)‖ = ‖A(x− y)‖ it is enough to check that ‖Ax‖ =
‖x‖, but this is clear since ‖Ax‖2 = (Ax).(Ax) = xAtAx = xtIx = ‖x‖.

In fact thes two kinds of isometries generate the full group of isometries. If
T : R2 → R2 is any isometry, let v = T (0). Then T1 = t−v ◦ T is an isometry which
fixes the origin. Thus it remains to show that any isometry which fixes the origin
is in fact linear. But you showed in Prelims Geometry that any such isometry of
Rn must preserve the inner product (because it preserves the norm and you can
express the inner product in terms of the norm). It follows such an isometry takes
an orthonormal basis to an orthonormal basis, from which linearity readily follows.
(Note that this argument works just as well in Rn.)

Example 7.3. Let Sn = {x ∈ Rn+1 : ‖x‖2 = 1} be the n-sphere (so S1 is a circle
and S2 is the usual sphere). Clearly On+1(R) acts by isometries on Sn. In fact
you can show that Isom(Sn) = On+1(R). To prove this one needs to show that any
isometry of Sn extends to an isometry of Rn+1 which fixes the origin.

We have already seen that on Rn the metrics d1, d2, d∞, although different,
induce the same notion of convergence and continuity13 . The notion of isometry
is thus in some sense too rigid a notion of equivalence if these are the notions we
are primarily interested in. A weaker, but often more useful, notion of equivalence
is the following:

Definition 7.4. Let f : X → Y be a continuous function between metric spaces
X and Y . We say that f is a homeomorphism if there is a continuous function
g : Y → X such that f ◦ g = idY and g ◦ f = idX . If there is a homeomorphism
between two metric spaces X and Y we say they are homeomorphic.

Remark 7.5. Note that the defintion implies that f is bijective as a map of sets but it
is not true in general14 that a continuous bijection is necessarily a homeomorphism.
To see this, consider the spaces X = [0, 1)∪ [2, 3] and Y = [0, 2]. Then the function
f : X → Y given by

f(x) =

{
x, if x ∈ [0, 1)

x− 1, if x ∈ [2, 3]

is a bijection and is clearly continuous. Its inverse g : Y → X is however not
continuous at 1 – the one-sided limits of g as x tends to 1 from above and below
are 1 and 2 respectively.

Example 7.6. The closed disk B̄(0, 1) of radius 1 in R2 is homoemorphic to the
square [−1, 1]× [−1, 1]. The easiest way to see this is inscribe the disk in the square
and stretch the disk radially out to the square. One can write explicit formulas for
this in the four quarters of the disk given by the lines x± y = 0 to check this does
indeed give a homeomorphism.

13There is actually a slightly subtle point here – to know that (Rn, d1) and (Rn, d2) are

not isometric we would need to show that there is no bijective map α : Rn → Rn such that
d2(α(x), α(y)) = d1(x, y) for all x, y ∈ Rn.

14This is unlike the examples you have seen in algebra – the inverse of a bijective linear map
is automatically linear, and the inverse of a bijective group homomorphism is automatically a

homomorphism. Similarly, the inverse of a bijective isometry is also an isometry.
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The open interval (0, 1) is homeomorphic to R: a homeomorphism between them
is given by the function x 7→ tan(π.(x−1/2)), which has inverse y 7→ 1

π arctan(y)+ 1
2 .

8. Completeness

One of the important notions in Prelims analysis was that of a Cauchy sequence.
This is a notion, like convergence, which makes sense in any metric space.

Definition 8.1. Let (X, d) be a metric space. A sequence (xn) in X is said to be
a Cauchy sequence if, for any ε > 0, there is an N ∈ N such that d(xn, xm) < ε for
all n,m ≥ N .

The following lemma establishes basic properties of Cauchy sequences in an
arbitrary metric space which you saw before for real sequences.

Lemma 8.2. Let (X, d) be a metric space.

(1) If (xn) is a convergent sequence then it is Cauchy.
(2) Any Cauchy sequence is bounded.

Proof. Suppose that xn → ` as n→∞ and ε > 0 is given. Then there is an N ∈ N
such that d(xn, `) < ε/2 for all n ≥ N . It follows that if n,m ≥ N we have

d(xn, xm) ≤ d(xn, `) + d(`, xm) < ε/2 + ε/2 = ε,

so that (xn) is a Cauchy sequence as required.
If (xn) is a Cauchy sequence, then taking ε = 1 in the definition, we see that

there is an N ∈ N such that d(xn, xm) < 1 for all n,m ≥ N . It follows that if we
set M = max{1, d(x1, xN ), d(x2, xN ), . . . , d(xN−1, xN )} then for all n ∈ N we have
xn ∈ B(xN ,M) so that (xn) is bounded as required. �

Part (1) of the lemma motivates the following definition:

Definition 8.3. A metric space (X, d) is said to be complete if every Cauchy
sequence in X converges.

Example 8.4. One of the main results in Analysis I was that R is complete, and
it is easy to deduce from this that Rn is complete also (since a sequence in Rn
converges if and only if each of its coordinates converge).

On the other hand, consider the metric space (0, 1]: The sequence (1/n) con-
verges in R (to 0) so the sequence is Cauchy in R and hence also in (0, 1], however
it does not converge in (0, 1].

The previous example suggests a connection between completeness and closed
sets. One precise statement of this form is the following:

Lemma 8.5. Let (X, d) be a complete metric space and let Y ⊆ X. Then Y is
complete if and only if Y is a closed subset of X.

Proof. Note that if (xn) is a Cauchy sequence in Y then it is certainly a Cauchy
sequence in X. Since X is complete, (xn) converges in X, say xn → a as n → ∞.
Thus (xn) converges in Y precisely when a ∈ Y . It follows that Y is complete if
and only if it contains the limits of all sequences (xn) in Y which converge in X.
But Lemma 5.23 shows that the set of limits of all sequences in Y is exactly Ȳ ,
hence Y is complete if and only if Ȳ ⊆ Y , that is, if and only if Y is closed.

�
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Another useful consequence of completeness is that it guarantees certain inter-
sections of closed sets are non-empty:

Lemma 8.6. Let (X, d) be a complete metric space and suppose that D1 ⊇ D2 ⊇ . . .
form a nested sequence of closed sets in X with the property that diam(Dk)→ 0 as
k →∞. Then there is a unique point w ∈ X such that w ∈ Dk for all k ≥ 1.

Proof. For each k pick zk ∈ Dk. Then since the Dk are nested, zk ∈ Dl for all
k ≥ l, and hence the assumption on the diameters ensures that (zk) is a Cauchy
sequence. Let w ∈ X be its limit. Since Dk is closed and contains the subsequence
(zn+k)n≥0 it follows w ∈ Dk for each k ≥ 1. To see that w is unique, suppose that
w′ ∈ Dk for all k. Then d(w,w′) ≤ diam(Dk) and since diam(Dk) → 0 as k → ∞
it follows d(w,w′) = 0 and hence w = w′. �

Remark 8.7. Notice that the property of a metric space being complete is not
preserved by homeomorphism – we have seen that (0, 1) is homeomorphic to R but
the former is not complete, while the latter is. This is because a homeomorphism
does not have to take Cauchy sequences to Cauchy sequences.

Example 8.8. Let Y = {z ∈ C : |z| = 1}\{1}. Then Y is homeomorphic to (0, 1)
via the map t 7→ e2πit, but their respective closures Ȳ and [0, 1] however are not
homeomorphic. (We will seem a rigorous proof of this later using the notion of
connectedness.) The metric spaces Y and (0, 1) contain information about their
closures in R2 which is lost when we only consider the topologies the metrics give:
the space Y has Cauchy sequences which don’t converge in Y , but these all converge
to 1 ∈ C, whereas in (0, 1) there are two kinds of Cauchy sequences which do not
converge in (0, 1) – the ones converging to 0 and the ones converging to 1. The
point here is that given two Cauchy sequences we can detect if they converge to
the same limit without knowing what that the limit actually is: (xn) and (yn)
converge to the same limit if for all ε > 0 there is an N ∈ N such that d(xn, yn) < ε
for all n ≥ N . Using this idea one can define what is called the completion of a
metric space (X, d): this is a complete metric space (Y, d) such which X embeds
isometrically into as a dense15 subset. For example, the real numbers R are the
completion of Q.

Many naturally arising metric spaces are complete. We now give a important
family of such: recall that if X is any set, the space B(X) of bounded real-valued
functions on X is normed vector space where if f ∈ B(X) we define its norm to be
‖f‖∞ = supx∈X |f(x)|.

Theorem 8.9. Let X be a set. The normed vector space (B(X), ‖.‖∞) is complete.

Proof. Let (fn)n≥1 be a Cauchy sequence in B(X). Then we have for each x ∈ X

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ → 0,

as n,m → ∞. It follows that the sequence (fn(x)) is a Cauchy sequence of real
numbers and hence since R is complete it converges to a real number. Thus we
may define a function f : X → R by setting f(x) = limn→∞ fn(x).

We claim fn → f in B(X). Note that this requires us to show both that f ∈ B(X)
and fn → f with respect to the norm ‖.‖∞. To check these both hold, fix ε > 0.

15that is, Y is the closure of X.
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Since (fn) is Cauchy, we may find an N ∈ N such that ‖fn − fm‖∞ < ε for all
n,m ≥ N . Thus we have for all x ∈ X and n,m ≥ N

|fn(x)− fm(x)| ≤ ‖fn − fm‖ < ε.

But now letting n→∞ we see that for any m ≥ N we have |f(x)− fm(x)| ≤ ε for
all x ∈ X. But then for any such m we certainly have f − fm ∈ B(X) so that16

f = fm + (f − fm) ∈ B(X), and since ‖f − fm‖∞ ≤ ε for all m ≥ N it follows
fm → f as m→∞ as required.

�

As we already observed, if X is also a metric space then we can also consider
the space of bounded continuous functions Cb(X) on X. This is a normed subspace
of B(X), and the following theorem is a generalization of the result you saw last
year showing that a uniform limit of continuous functions is continuous (the proof
is essentially the same also).

Theorem 8.10. Let (X, d) be a metric space. The space Cb(X) is a complete
normed vector space.

Proof. Since we have shown in Theorem 8.9 that B(X) is complete, by Lemma
8.5 we must show that Cb(X) is a closed subset of B(X). Let (fn) be a Cauchy
sequence of bounded continuous functions on X. By Theorem 8.9 this sequence
converges to a bounded function f : X → R. We must show that f is continuous.
Suppose that a ∈ X and let ε > 0. Then since fn → f there is an N ∈ N such
that ‖f − fn‖∞ < ε/3 for all n ≥ N . Moreover, if we fix n ≥ N then since fn is
continuous, there is a δ > 0 such that |fn(x)− fn(a)| < ε/3 for all x ∈ B(a, δ). But
then for x ∈ B(a, δ) we have

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)|
< ε/3 + ε/3 + ε/3 = ε.

It follows that f is continuous at a, and since a was arbitrary, f is a continuous
function as required.

�

Lemma 8.11. (“Weierstrass M -test”): Let X be a metric space. Suppose that (fn)
is a sequence in Cb(X) and (Mn)n≥0 is a sequence of non-negative real numbers such
that ‖fn‖∞ ≤ Mn for all n ∈ Z≥0 and

∑
n≥0Mn exists. Then the series

∑
n≥0 fn

converges in Cb(X).

Proof. Let Sn =
∑N
k=0 fk be the sequence of partial sums. Since we know Cb(X) is

complete, it suffices to prove that the sequence (Sn)m≥0 is Cauchy. But if n ≤ m
then we have

‖Sm − Sn‖ ≤
m∑

k=n+1

‖fk‖ ≤
m∑

k=n+1

Mk,

and since
∑
k≥0Mk converges, the sum

∑m
k=n+1Mk tends to zero as m,n→∞ as

required. �

Finally, we conclude this section with a theorem which is extremely useful, and is
a natural generalization of a result you saw last year in constructive mathematics.
We first need some terminology:

16Recall from Lemma 3.7 that B(X) is a vector space!
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Definition 8.12. Let (X, d) and (Y, d) be metric spaces and suppose that f : X →
Y . We say that f is a Lipschitz map (or is Lipschitz continuous) if there is a
constant K ≥ 0 such that

d(f(x), f(y)) ≤ Kd(x, y).

If Y = X and K ∈ [0, 1) then we say that f is a contraction mapping (or simply a
contraction). Any Lipschitz map is continuous, and in fact uniformly continuous,
as is easy to check.

The reason for the restriction of the term contraction to maps from a space to
itself is the following theorem. The result is a broad generalization of a result you
saw before in the Constructive Mathematics course in Prelims, which you will also
see put to good use in the Differential Equations course this term.

Theorem 8.13. Let (X, d) be a nonempty complete metric space and suppose that
f : X → X is a contraction. Then f has a unique fixed point, that is, there is a
unique z ∈ X such that f(z) = z.

Proof. If y1, y2 ∈ X are such that f(y1) = y1 and f(y2) = y2 we have d(y1, y2) =
d(f(y1), f(y2)) ≤ Kd(y1, y2) so that (1−K)d(y1, y2) ≤ 0. Since K ∈ [0, 1) and the
function d is nonnegative this is possible only if d(y1, y2) = 0 and hence y1 = y2. It
follows that f has at most one fixed point.

To see that f has a fixed point, fix a ∈ X and consider the sequence defined by
x0 = a and xn = f(xn−1) for n ≥ 1. We claim that (xn) converges and that its
limit z is the unique fixed point of f . Indeed if xn → z as n → ∞ then since f is
continuous we have

f(z) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = z.

Thus z is indeed a fixed point. Thus it remains to show that (xn) is convergent.
Since (X, d) is complete, we need only show that (xn) is Cauchy. To see this this
note first that for n ≥ 1 we have d(xn, xn−1) ≤ Kn−1d(f(a), a) (by induction). But
then if n ≥ m by the triangle inequality we have

d(xn, xm) ≤
n−m∑
k=1

d(xm+k, xm+k−1) ≤ d(a, f(a))Km
n−m∑
k=1

Kk−1 ≤ d(a, f(a))

1−K
Km,

which clearly tends to 0 as n,m → ∞. It follows (xn) is a Cauchy sequence as
required. �

Remark 8.14. This theorem is important not just for the statement, but because the
proof shows us how to find the fixed point! (Or rather, at least how to approximate
it). The sequence (xn) in the proof converges to the fixed point, and in fact does
so quickly – if we start with an initial guess a, and z is the actual fixed point, then
d(xn, z) ≤ Kn.d(a, z).

Remark 8.15. It is worth checking to what extent the hypotheses of the theorem
are necessary. One might think of a weaker notion of contraction, for example: if
f : X → X has the property that d(f(x), f(y)) < d(x, y) for all x, y ∈ X then it is
easy to see that f has at most one fixed point, but the example f : [1,∞)→ [1,∞)
where f(x) = x+ 1/x shows that such a map need not have any fixed points.

The requirement that X is complete is also clearly necessary: if f : (0, 1)→ (0, 1)
is given by f(x) = x/2 clearly f is a contraction, but f has no fixed points in (0, 1).
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9. Connected sets

In this section we try to understand what makes a space “connected”. There are
in fact more than one approaches one can take to this question. We will consider
two, and show that for reasonably nice spaces the two notions in fact coincide17.

The first definition we make tries to capture the fact that the space should not
“fall apart” into separate pieces. Since we can always write a space with more
than one element as a disjoint union of two subsets, we must take into account the
metric, or at least the topology, of our space in making a definition.

Example 9.1. Let X = [0, 1] and let A = [0, 1/2) and B = [1/2, 1]. Then clearly
X = A∪B so that X can be divided into two disjoint subsets. However, the point
1/2 ∈ B has points in A arbitrarily close to it, which, intuitively speaking, is why
it is “glued” to A.

This suggests that we might say that a decomposition of metric space X into
two subsets A and B might legitimately show X to be disconnected if no point of A
was a limit point of B and vice versa. This is precisely the content of our definition.

Definition 9.2. Suppose that (X, d) is a metric space. We say that X is discon-
nected if we can write X = U ∪ V where U and V are nonempty open subsets of
X and U ∩ V = ∅. We say that X is connected if it is not disconnected.

Note that if X = U ∪ V and U and V are both open and disjoint, then U = V c

is also closed, as is V . Thus U and V also contain all of their limit points, so that
no limit point of A lies in B and vice versa.

Remark 9.3. Note that if (X, d) is a metric space and A ⊆ X, then the condition
thatA is connected can be rewritten as follows: if U, V are open inX and U∩V ∩A =
∅ then whenever A ⊆ U ∪ V , either A ⊆ U or A ⊆ V .

As the previous remark shows, there are a few ways of expressing the above
definition which are all readily seen to be equivalent. We record the most common
in the following lemma.

Lemma 9.4. Let (X, d) be a metric space. The following are equivalent.

(1) X is connected.
(2) If f : X → {0, 1} is a continuous function then f is constant.
(3) The only subsets of X which are both open and closed are X and ∅. (Here

the set {0, 1} is viewed as a metric space via its embedding in R, or equiv-
alently with the discrete metric.)

Proof. (1) ⇐⇒ (2): Let f : X → {0, 1} be a continuous function. Then since the
singleton sets {0} and {1} are both open in {0, 1} each of f−1(0) and f−1(1) are
open subsets of X which are clearly disjoint. It follows if X is connected then one
must be the empty set, and hence f is constant as required. Conversely, if X is not
connected then we may write X = A ∪ B where A and B are nonempty disjoint
open sets. But then the function f : X → {0, 1} which is 1 on A and 0 on B is
non-constant and by the characterization of continuity in terms of open sets, f is
clearly continuous.

17In particular, for the open subsets of the complex plane which are the sets we will be most
interested in for second part of the course, the two notions will coincide, but both characterizations

of connectedness will be useful.



METRIC SPACES AND COMPLEX ANALYSIS. 25

(1) ⇐⇒ (3): If X is disconnected then we may write X = A ∪ B where A
and B are disjoint nonempty open sets. But then Ac = B so that A is closed (as
is B = Ac) so that A and B proper sets of X which are both open and closed.
Conversely, if A is a proper subset of X which is closed and open then Ac is also a
proper subset which is both closed and open so that the decomposition X = A∪Ac
shows that X is disconnected. �

Example 9.5. If X = [0, 1]∪ [2, 3] ⊂ R then we have seen that both [0, 1] and [2, 3]
are open in X, hence since X is their disjoint union, X is not connected.

Lemma 9.6. Let (X, d) be a metric space.

i) Let {Ai : i ∈ I} be a collection of connected subsets of X such that⋂
i∈I Ai 6= ∅. Then

⋃
i∈I Ai is connected.

ii) If A ⊆ X is connected then if B is such that A ⊆ B ⊆ Ā, the set B is also
connected.

iii) If f : X → Y is continuous and A ⊆ X is connected then f(A) ⊆ Y is
connected.

Proof. For the first part, suppose that f :
⋃
i∈I Ai → {0, 1} is continuous. We must

show that f is constant. Pick x0 ∈
⋂
i∈I Ai. Then if x ∈

⋃
i∈I Ai there is some i for

which x ∈ Ai. But then the restriction of f to Ai is constant since Ai is connected,
so that f(x) = f(x0) as x, x0 ∈ Ai. But since x was arbitrary, it follows that f is
constant as required.

See the second problem sheet for hints for the first second part.
For the final part, note that since f is continuous, if f(A) ⊆ U ∪ V for U and V

open in Y with U∩V ∩f(A) = ∅, then A ⊂ f−1(U)∪f−1(V ), f−1(U)∩f−1(V )∩A =
∅ and f−1(U), f−1(V ) are open in X. Since A is connected it must lie entirely in one
of f−1(U) or f−1(V ) and hence f(A) must lie entirely in U or V as required. �

Remark 9.7. Notice that iii) in the previous Lemma implies that if X and Y are
homeomorphic, they if X is connected so is Y , and vice versa. Note also that iii)
allows us to generalize the characterization of connectedness in terms of functions
to the set {0, 1}. We say that a metric (or topological) space is discrete if every
point is an open set. It is easy to see that the connected subsets of a discrete
metric space are precisely the singleton sets, thus any continuous function from a
connected set to a discrete set must be constant. This applies for example to sets
such as N and Z, which will be very useful for us later in the course.

Definition 9.8. Part i) of Lemma 9.6 has an important consequence: if (X, d) is a
metric space and x0 ∈ X, then the set of connected subsets of X which contain x0

is closed under unions, that is, if {Ci : i ∈ I} is any collection of connected subsets
containing x0 then

⋃
i∈I Ci is again a connected subset containing x0. This means

that

Cx0
=

⋃
C⊆X connected,

x0∈C

C,

is the largest18 connected subset of X which contains x0, in the sense that any
connected subset of X which contains x0 lies in Cx0 . It is called the connected

18This is the analogous to the definition of the interior of a subset S of X, which is the largest
open subset of X contained in S.
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component of X containing x0. The space X is the disjoint union of its connected
components.

9.1. Connected sets in R.

Proposition 9.9. The real line R is connected.

Proof. Let U and V be open subsets of R such that R = U ∪ V and U ∩ V = ∅.
Suppose for the sake of a contradiction that both U and V are non-empty so that
we may pick x ∈ U and y ∈ V . By symmetry we may assume that x < y (since
U ∩ V = ∅ we cannot have x = y). Since [x, y] is bounded and x ∈ U it follows
that c = sup{z ∈ [x, y] : z ∈ U} exists, and certainly c ∈ [x, y]. If c ∈ U then
c 6= y and as U is open there is some ε1 > 0 such that B(c, ε1) ⊆ U . Thus if we
set δ = min{ε1/2, (y − c)/2} > 0 we have c + δ ∈ U ∩ [x, y] contradicting the fact
that c is an upper bound for S. Similarly if c ∈ V then there is an ε2 > 0 such that
B(c, ε2) ⊆ V . But then ∅ = (c− ε2, c]∩U ⊇ (c− ε2, c]∩S, so that c− ε2 is an upper
bound for S, contradiction the fact that c is the least upper bound of S. It follows
that one of U or V is the empty set as required. �

Corollary 9.10. The real line R, every half-line (a,∞), (−∞, a), [a,∞) or (−∞, a]
and any interval are all connected subsets of R.

Proof. We have already seen that R is connected, and since every open interval (a, b)
or open half-line (a,∞), (−∞, a) is homeomorphic to R they are also connected.
The remaining cases the follow from part ii) of Lemma 9.6. �

Exercise 9.11. Show that any interval or half-line is homeomorphic to one of [0, 1],
[0, 1) or (0, 1).

Lemma 9.12. Suppose that A ⊂ R is a connected set. Then A is either R, an
interval, or a half-line.

Proof. Suppose that x, y ∈ A and x < y. We claim that [x, y] ⊆ A. Indeed if
this is not the case then there is some c with x < c < y and c /∈ A. But then
A =

(
A ∩ (−∞, c)

)
∪ ((A ∩ (c,∞)

)
so that A is not connected.

If we let sup(A) = +∞ if A is not bounded above and inf(A) = −∞ if A is not
bounded below, then by the approximation property it follows that

(inf(A), sup(A)) =
⋃

x,y∈A
x≤y

[x, y] ⊆ A,

so that A is an interval or half-line as required. (The inf(A) and sup(A) may or
may not lie in A, leading to open, closed, or half-open intervals and open or closed
half-lines.) �

Proposition 9.13. (Intermediate Value Theorem.) Let f : [a, b]→ R be a continu-
ous function. Then the image of f is an interval in R. In particular, f takes every
value between f(a) and f(b).

Proof. Since [a, b] is connected, its image must be connected, and hence by the
above it is an interval. The in particular claim follows. �

Remark 9.14. Note that for the Intermediate Value Theorem we only needed to
know that [a, b] was connected and that a connected subset A of R has the property
that if x ≤ y lie in A then [x, y] ⊆ A.
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9.2. Path connectedness. A quite different approach to connectedness might
start assuming that, whatever a connected set should be, the closed interval should
be one19.

Definition 9.15. Let (X, d) be a metric space. A path inX is a continuous function
γ : [a, b] → X where [a, b] is any non-empty closed interval. If x, y ∈ X then we
say there is a path between x and y if there is a path γ : [a, b] → X such that
γ(a) = x and γ(b) = y. We say that the metric space X is path-connected if there
is a path between any two points in X. Note that since every close interval [a, b]
is homeomorphic to [0, 1] one can equivalently require that paths are continuous
functions γ : [0, 1] → X. In the subsequent discussion we will, for convenience,
impose this condition.

There are a number of useful operations on paths: Given two paths γ1, γ2 in X
such that γ1(1) = γ2(0) we can form the concatenation γ1 ? γ2 of the two paths to
be the path

γ1 ? γ2(t) =

{
γ1(2t), 0 ≤ t ≤ 1/2

γ2(2t− 1), 1/2 ≤ t ≤ 1

Finally, if γ : [0, 1]→ X is a path, then the opposite path γ− is defined by γ−(t) =
γ(1− t).

Definition 9.16. There is a notion of path-component for a metric space: Let us
define a relation on points in X as follows: Say x ∼ y if there is a path from x to
y in X. The constant path γ(t) = x (for all t ∈ [0, 1]) shows that this relation is
reflexive. If γ is a path from x to y then γ− is a path from y to x, so the relation
is symmetric. Finally if γ1 is a path from x to y and γ2 is a path from y to z then
γ1 ? γ2 is a path from x to z, so the relation is transitive. It follows that ∼ is an
equivalence relation and its equivalence classes, which partition X, are known as
the path components of X.

We now relate the two notions of connectedness.

Proposition 9.17. Let (X, d) be a metric space. If X is path-connected then it is
connected. If X is an open subset of V where V is a normed vector space, then X
is path-connected if it is connected.

Proof. Suppose that X is path-connected. To see X is connected we use the char-
acterization of connectedness in terms of functions to {0, 1}. Consider such a func-
tion f : X → {0, 1}. We wish to show that f is constant, that is, we need to show
that if x, y ∈ X then f(x) = f(y). But Z is path-connected, so there is a path
γ : [0, 1] → X such that γ(0) = x and γ(1) = y. But then f ◦ γ is a continuous
function from the connected set [0, 1] to {0, 1} so that f ◦ γ must be constant. But
then f(x) = f ◦ γ(0) = f ◦ γ(1) = f(y) as required.

Now suppose that X is open in V where V is a normed vector space. Let x0 be
a point in X and let P be its path component. Then if v ∈ P , since X is open,
there is an open ball B(v, r) ⊆ Z. Given any point w in B(v, r) we have the path
γw(t) = tw + (1 − t)v from v to w, and hence concatenating a path from x0 to v
with γv we see that w lies in P . It follows that B(v, r) ⊆ P so that P is open in
V . But since X is the disjoint union of its path components, it follows that if Z is

19Since we’ve seen that the closed interval is connected according to our previous definition, it
shouldn’t be too surprising that we will readily be able to see our second notion of connectedness

implies the first. The subtle point will be that it is actually in general a strictly stronger condition.
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connected it must have at most one path-component and so is path-connected as
required. �

Remark 9.18. Note that it is easy to see that if (X, d) is path-connected and f : X →
Y is continuous, then the image of X under f is a path-connected subset of Y : if
y1 = f(x1) and y2 = f(x2) are in the image of f , then if we pick a path γ : [0, 1]→ X
from x1 to x2 in X, clearly f ◦ γ is a path from y1 to y2 in f(X).

Example 9.19. In general it is not true that a connected set need be path-
connected. One reason the two notions differ is because, as well as being connected,
the closed interval is what is known as compact, a notion we will examine shortly.
One consequence of this is that if (X, d) is a metric space and A ⊂ X is a path-
connected subspace then Ā, the closure of A need not be path-connected, despite
the fact that we have already seen that it must be connected.

Consider the subset A ⊆ R2 given by

A = {(t, sin(1/t) : t ∈ (0, 1]}.

Since A is clearly the image of (0, 1] under a continuous map, it is a connected
subset of R2, and hence its closure Ā = A ∪ ({0} × [−1, 1]) is also connected. We
claim however that Ā is not path-connected. To see informally why this is the case,
suppose γ : [0, 1] → R2 has a path from (1, sin(1)) to (0, 1). Then the first and
second coordinates x(t) and y(t) of γ are continuous functions on a closed interval,
so they are uniformly continuous. By the intermediate value theorem x(t) must
take every value between 1 and 0, but then y(t) must oscillate between −1 and 1
infinitely often which violates uniform continuity.

10. Compactness: from local to global

The notion of continuity for functions is a “local” one. As a first attempt to make
the previous sentence more precise, recall that in the ε-δ version of the definition
of continuity we say a function f : X → Y is continuous if it is continuous at every
a ∈ X. But determining if f is continuous at a only requires knowing the values
of the function at points an arbitrarily small distance from a – that is, we only
need to know the values of f “locally” near a in order to determine whether f is
continuous there.

There is another way of expressing this property in terms of open sets, as the
following lemma formalizes. Recall that if f : X → Y is a function and S ⊆ X
then f induces a function from S to Y , the restriction of f to S. We denote this
function by f|S : S → Y .

Lemma 10.1. Suppose that f : X → Y is a function between metric spaces X and
Y . If U = {Ui : i ∈ I} is a collection of open sets and V =

⋃
i∈I Ui, then the

restriction f|V of f to V is continuous if and only if the restrictions f|Ui of f to
each Ui are continuous.

Proof. We use the characterisation of continuity in terms of open sets. Suppose
first that f : X → Y is continuous and let S ⊆ X be any subset of X. Then if
W ⊆ Y is an open set, the continuity of f ensures that f−1(W ) is open in X. But
then f−1

|S (W ) = f−1(W )∩S is the interesction of S with an open subset of X, and

so is an open subset of S. It follows that f|S is continuous. But now if V =
⋃
i∈I Ui

is a union of open subsets Ui of X, replacing X with V in the above shows that
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if f|V is continuous then as Ui ⊆ V we must have f|Ui is also continuous for each

i ∈ I20.
On the other hand, if f|Ui is continuous for each i ∈ I then since

f−1
|V (W ) = V ∩ f−1(W ) =

⋃
i∈I

Ui ∩ f−1(W ) =
⋃
i∈I

f−1
|Ui (W ).

and the right-hand side of the above expression is a union of open sets (in both V
and each Ui since Ui is open in V ) and hence is open, it follows that f−1

|V (W ) is

open. �

Remark 10.2. In exactly the same way you can show that if we write X as the
union of finitely many closed sets X =

⋃n
i=1 Fi then f : X → Y is continuous if and

only if f|Fi is continuous. (The finiteness is needed because only a finite union of
closed sets is necessarily closed).

Example 10.3. While it is always true that if f is continuous on X it is continuous
on any subspace of X, it is not the case that if we write a metric space X as the
union of two arbitrary subsets X = A ∪ B and f : X → Y is a function, then the
continuity of f on X is determined by whether f is continuous on the subspaces A
and B. Indeed very simple examples show this is false! Suppose that X = [0, 1] and
let f(x) = 0 if x ∈ [0, 1/2) and f(x) = 1 if x ∈ [1/2, 1]. Then [0, 1] = [0, 1/2)∪[1/2, 1]
and the function f is constant (and so certainly continuous) on both [0, 1/2) and
[1/2, 1] but it is clearly not continuous on [0, 1] – it has a jump discontinuity at
x = 1/2.

Remark 10.4. A number of other properties of functions are similarly local in nature
– for example for functions on R (or as we will shortly focus on, functions on the
complex plane) the property of being differentiable is local. It is a useful exercise
to think through which properties of functions you know are “local” and which are
not. You should extract one such property from the discussion below...

Now the definition of continuity thus provides “local” information about a func-
tion, but often we seek to extrapolate a more “global” consequence. The most
important examples of this which you saw last year were the constancy theorem for
functions whose derivative is zero and the theorem that a continuous function on
a closed bounded interval is bounded and attains its bounds. (The latter of these
is important not just by itself but also because it was the crucial ingredient in the
proof of the mean-value theorem). The next example shows that this is not always
possible.

Example 10.5. Let f : X → R be a continuous function on a metric space X. As
usual, we say a function is bounded if there is some K ∈ R such that |f(x)| < K
for all x ∈ X. The question of whether or not a function is bounded is not local:
indeed any continuous function is what one might call “locally bounded” in that
if we take ε = 1 in the definition of continuity, we see that for any a ∈ X there is
a δ > 0 such that |f(x)| < |f(a)| + 1 for every x ∈ B(a, δ). Thus every point in
X has a neighbourhood about it on which the function is bounded. On all of X
however, the values of f may or may not be bounded. For example, f(x) = 1/x is
continuous on (0, 1) and so locally bounded in the above sense, but certainly not

20Note that the proof of this implication does not require the Uis to be open.
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bounded on the whole domain (0, 1). In the case where X is compact however, this
will follow easily from the above “local” fact.

We are now almost ready to give the definition of compactness. We first need
some terminology:

Definition 10.6. Let X be a metric space. A collection of open sets {Ui : i ∈ I} =
U is called an open cover of X if we have X =

⋃
i∈I Ui. A subcover is a subset

of the collection of open sets, indexed by some J ⊆ I such that X =
⋃
j∈J Uj . A

cover (and in particular a subcover) is finite if it consists of finitely many open sets
(or equivalently, we may chose the set J to be finite).

Remark 10.7. (Non-examinable:) In fact one can use the statement of Lemma 10.1
to give a precise formulation of the notion of a “local property”: We say that
a property P of a function f : X → Y between metric space (or even abstract
topological spaces) is local if for whenever U = {Ui : i ∈ I} is an open cover of X,
the function f has property P if and only if the functions f|Ui have property P . As
we have seen, continuity is a local properties in this sense, but boundedness is not.

Definition 10.8. A metric space X is said to be compact if every open cover has
a finite subcover. That is, whenever X =

⋃
i∈I Ui for open subsets Ui of X, there

is a finite subset K ⊆ I such that X =
⋃
k∈K Uk.

Let X be a metric space and A be a subspace. If {Vi : i ∈ I} is an open cover of
A, that is, each Vi is an open subset of A and A =

⋃
i∈I Vi, then for each Vi there

is an open subset Ui of X such that Vi = Ui ∩ A and hence A ⊆
⋃
i∈I Ui. Thus

we see that for a subspace A of a metric space X we may rephrase the definition
that A is compact as follows: A ⊆ X is compact if whenever we have a collection
of open subsets {Ui : i ∈ I} of X with A ⊆

⋃
i∈I Ui, there is a finite subset J ⊆ I

such that A ⊆
⋃
j∈J Uj .

Example 10.9. Any finite set is easily seen to be compact. On the other hand,
(0, 1) is certainly not compact, because (0, 1) =

⋃
n≥2(1/n, 1) which does not have

a finite subcover.

Remark 10.10. A useful, though somewhat imprecise, way to think about com-
pactness is as a kind of “finiteness” condition for metric (or topological) spaces,
somewhat analogous to the condition of finite-dimensionality for vector spaces.

The next Proposition is one of the keys to understanding the compact subsets
of Rn, and gives us a nontrivial example of a compact set.

Proposition 10.11. (Heine-Borel.) The interval [a, b] is compact.

Proof. Suppose that U = {Ui : i ∈ I} is an open cover of [a, b] which has no finite
subcover. Let a0 = a, b0 = b and c0 = (a + b)/2. If both [a0, c0] and [c0, b0] have
a finite subcover, then clearly the union of the finite subcovers is again a finite
subcover of [a, b]. Thus at least one of [a0, c0] or [c0, b0] has no finite subcover.
Set [a1, b1] to be the left-most of the two subintervals which does not have a finite
subcover. Then |b1−a1| = |a−b|/2, and [a1, b1] is a closed interval, for which U (or
its intersection with [a1, b1] if you prefer) is an open cover with no finite subcover.

Iterating in this way we get a nested sequence of intervals {[an, bn] : n ≥ 1} each
of which is covered by U none of which has a finite subcover, such that |an − bn| =
|b−a|/2n. However, by Lemma 8.6, there is α ∈ [a, b] such that

⋂
n≥1[an, bn] = {α}.
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Since U is an open cover of [a, b] there is some Ui ∈ U for which α ∈ Ui. But then
there is some ε > 0 such that (α − ε, α + ε) ⊆ Ui. Since |bn − an| = |b− a|/2n , it
follows that for large enough n we have [an, bn] ⊆ (α− ε, α+ ε) ⊆ Ui, contradicting
the construction of the intervals [an, bn].

�

Lemma 10.12. Let f : X → Y be a continuous function and suppose that X is
compact. Then f(X) is compact.

Proof. If U = {Ui : i ∈ I} is an open cover of f(X), then clearly {f−1(Ui) : i ∈ I}
is an open cover of X (since f is continuous). But then as X is compact there is
some finite subset J ⊆ I such that X ⊆

⋃
i∈J f

−1(Ui) = f−1(
⋃
i∈J Ui), that is,

f(X) ⊆
⋃
i∈J Ui, and hence f(X) is compact as required. �

Remark 10.13. Note that the previous Lemma shows that compactness is a home-
omorphism invariant: if X and Y are homeomorphic then X is compact if and only
if Y is compact. (We saw the same thing for connected sets already).

Lemma 10.14. Let X is a metric space.

i) Let Z be a compact subset of X, then Z is closed and bounded.
ii) If X is compact, then Z ⊆ X is compact if and only if it is closed.
iii) If X is compact, any continuous function f : X → R is bounded and attains

its bounds.

Proof. Suppose that Z ⊆ X is not closed, so that there is some a ∈ X which is
a limit point of Z and is not in Z. Then let Un = {x ∈ X : d(x, a) > 1/n} =
B̄X(a, ε)c. Clearly the Z ⊆

⋃
n≥1 Un, but Z does not lie in any finite subcover, so

Z is not compact.
Similarly, if Z is not bounded, then if we fix x ∈ X, Z does not lie entirely in

B(x, n) for any n ∈ N. However X =
⋃
n≥1B(x, n), so that these open balls certain

give an open cover of Z which does not have a finite subcover, so that Z is not
compact.

For the second part, we have already seen that if Z is compact it must be closed
in X. On the other hand if X is compact, and U = {Ui : i ∈ I is a covering of Z,
the (X\Z)∪

⋃
i∈I Ui is an open cover of X, and hence it has a finite subcover. The

elements of this subcover which lie in U clearly give a finite subcover of Z and so
Z is compact.

For the final part, note that if X is compact, so is f(X). It follows f(X)
is a closed bounded subset of R, hence f is bounded and attains its bounds as
required. �

Remark 10.15. It can be useful to note that part ii) of this Lemma has the following
consequence: if f : X → Y is a continuous bijection, then it is a homeomorphism,
i.e. its (set-theoretic) inverse g : Y → X is automatically continuous: it is enough
to show that the preimage of a closed set Z ⊂ X under g is closed in Y . But the
preimage of Z under g is just the image of Z under f , which is compact because f
is continuous, and hence closed by part ii) of the Lemma.

If (X, dX) and (Y, dY ) are metric spaces, there are a number of ways by which
one can make X×Y a metric space. For convenience for what follows we will define
a metric on X × Y by setting

d((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.
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Example 10.16. If we let X = R with the standard metric, then viewing Rn =
Rn−1 ×R we see that the above definition gives an inductive definition of a metric
on Rn for all n. Check that this metric is the metric d∞.

Lemma 10.17. Suppose that Y is compact and U is an open set in X × Y con-
taining {x} × Y . Then there is a δ > 0 such that B(x, δ)× Y ⊆ U .

Proof. nSince U is open in X × Y , for each y ∈ Y there is a δy > 0 such
that BX×Y ((x, y), δy) ⊆ U . Since by definition BX×Y ((x, y), δy) = BX(x, δy) ×
BY (y, δy), it follows that {x} × Y ⊆

⋃
y∈Y BX(x, δy) × BY (y, δy). But we clearly

have Y =
⋃
y∈Y BY (y, δy), and so since Y is compact it follows we may find

{y1, . . . , yn} ⊆ Y such that Y =
⋃n
j=1BY (yj , δyj ). Now let δ = min{δyj : 1 ≤

j ≤ n} > 0. Then for any y ∈ Y we have y ∈ BY (yj , δyj ) for some j ∈ {1, 2, . . . , n}
and hence B(x, δ)× {y} ⊆ BX(x, δ)×BY (yj , δyj ) ⊆ BX(x, δyj )×BY (yj , δyj ) ⊆ U .
It follows that B(x, δ)× Y ⊆ U as required.

�

Remark 10.18. It is useful to notice that the conclusion of the Lemma is false
if Y is not compact: For example, if X = Y = R, then {0} × R is a subset of
U = {(x, y) ∈ R2 : xy < 1}, but there is no δ > 0 for which (−δ, δ) × R since the
graph of y = 1/x has the y-axis as an asymptote.

Proposition 10.19. Suppose that X and Y are compact metric spaces. Then
X × Y is again compact.

Proof. We need to show that any open cover U = {Ui : i ∈ I} of X × Y has a
finite subcover. Now if x ∈ X, then {x}× Y is isometric to Y by the obvious map,
and U yields an open cover of this embedded copy of Y . Since Y is compact, there
is a finite subset Ix ⊂ I such that {x} × Y ⊆

⋃
i∈Ix Ui. Note we can also require

Ui ∩ {x} × Y 6= ∅ (as removing Uis which do not intersect {x} × Y will not change
the fact that we have a covering.)

Let Vx =
⋃
i∈Ix Ui. Then Vx is an open subset of X×Y which contains {x}×Y ,

and so by Lemma 10.17 there is a δx > 0 such that BX(x, δx) × Y ⊆ Vx. Since
{BX(x, δx) : x ∈ X} is clearly an open cover of X, we may take a finite subcover
{BX(xi, δi) : i = 1, 2, . . . , n}. But then if we let J =

⋃n
j=1 Ixj , a finite set, we have

X × Y =

n⋃
i=1

BX(xi, δi)× Y ⊆
n⋃
i=1

Vxi =
⋃
j∈J

Uj ,

and so {Uj : j ∈ J} is a finite subcover as required. �

This Proposition gives us a way to produce many compact subsets of Rn.

Proposition 10.20. (Heine-Borel.) If X ⊂ Rn then X is compact if and only if
it is closed and bounded.

Proof. We have already seen that a compact subspace must be closed and bounded,
so it remains to check the converse. Now since a closed interval [a, b] is compact,
the previous proposition (and induction on n) shows that “hypercubeoid”

[a1, b1]× [a2, b2]× . . .× [an, bn]; ai, bi ∈ R, ai ≤ bi, 1 ≤ i ≤ n
is compact. If X is a bounded subset of Rn then there is some N > 0 such that
X ⊆ [−N,N ]n, and since [−N,N ]n is compact, it follows that X is also, since it is
a closed subset of a compact space. �
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Remark 10.21. We prove the above statement using the metric d∞ on Rn. However,
since we have seen that the metrics d1, d2, d∞ are all equivalent and thus give the
same topology on Rn, it follows that the compact subsets of Rn with the standard
Euclidean (that is d2) notion of distance are still precisely the closed bounded sets.

Remark 10.22. At least in Rn, this shows that the notion of compactness reduces
to that of closed and bounded sets. In more general metric spaces though, the two
notions are genuinely different. We will see an example shortly.

Exercise 10.23. One reason that boundedness is not a good property, is that it is
not preserved by homeomorphism: Show that any metric space X is homeomorphic
to one which is bounded.

Theorem 10.24. Let X be a compact metric space, Then every continuous function
f : X → Y is uniformly continuous.

Proof. Since f is continuous, if ε > 0 then for each x ∈ X there is some δx > 0
such that BX(x, 2δx) ⊆ f−1(BY (f(x), ε/2)). Now clearly X =

⋃
x∈X BX(x, δx), so

as X is compact, there is a finite subcover, that is:

(10.1) X =

n⋃
i=1

BX(xi, δi),

(where for simplicity of notation we write δi rather than δxi). Now let δ = min{δi :
1 ≤ i ≤ n}, and suppose that y, z ∈ X are such that d(y, z) < δ. Then (10.1) there
is some i, 1 ≤ i ≤ n such that y ∈ BX(xi, δi). But then d(xi, z) ≤ d(xi, y)+d(y, z) <
δi + δ < 2δi, and so y, z ∈ BX(xi, 2δi), and hence

d(f(y), f(z)) ≤ d(f(y), f(xi)) + d(f(xi), f(z)) < ε/2 + ε/2

Thus f is uniformly continuous as required. �

Remark 10.25. Since a uniformly continuous function is certainly continuous, this
Proposition show that for compact metric spaces, the two notions (continuity and
uniform continuity) are equivalent.

Lemma 10.26. Let (X, d) be a metric space and let (xn)n≥1 be a sequence in X.
If the set {xn : n ∈ N} has a limit point a, then there is a subsequence (xnk)k≥1

which converges to a.

Proof. We construct the subsequence recursively. Suppose we already have found,
for 1 ≤ i < k, terms xn1

, . . . , xnk−1
in (xn)n≥1 such that n1 < n2 < . . . < nk−1 and

0 < d(xni , a) < 1/i. Then let ε = min{1/k, d(a, xm) : 1 ≤ m ≤ nk−1}, and pick
some xnk ∈ B(a, ε)\{a}. Then we have nk > nk−1 and so we obtain a subsequence
(xnk)k≥1 tending to a as required. �

Proposition 10.27. Let X be a compact metric space and suppose that (xn)n≥1

is a sequence in X. Then (xn) has a convergent subsequence.

Proof. By Lemma 10.26 if A = {xn : n ≥ 1} has a limit point we are done.
Otherwise, suppose A′ = ∅, so that in particular A is closed. Then since X is
compact A is compact also. However, since A′ = ∅ for each a ∈ A we can find
εa > 0 such that B(a, εa) ∩ A = {a}. Thus A ⊆

⋃
a∈AB(a, εa) is a cover with

no proper subcover, hence as A is compact it must be finite. But then for some
a ∈ A we must have {n ∈ N : xn = a} infinite, and hence (xn) contains a constant
subsequence (which of course converges).
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�

Definition 10.28. A metric space (X, d) in which any sequence (xn)n≥1 has a
convergent subsequence is said to be sequentially compact. Last year we showed
that a closed interval is sequentially compact via the Bolzano-Weierstrass theorem
– the above gives a new proof of this fact.

We have just shown that any compact metric space is sequentially compact. In
fact the converse to this holds, but we will not prove it in this course.

Remark 10.29. The closed unit ball B̄(0, 1) ⊂ `1 is not sequentially compact, as
the sequence (ei)i≥1 cannot have a convergent subsequence since ‖ei − ej‖ = 2 for
all i, j with i 6= j. Thus despite being closed and bounded, it is not compact.

Proposition 10.30. Any compact metric space X is complete.

Proof. Let (xn)n≥1 be a Cauchy sequence. Then by Proposition 10.27 it has a
convergent subsequence (xnk)k≥1, say (xnk)→ a as k →∞. We claim that (xn)n≥1

also tends to a. Indeed let ε > 0. Then there is some K ∈ N such that for k ≥ K
we have d(a, xnk) < ε/2, and moreover, some N ∈ N so that d(xn, xm) < ε/2 for
all n,m ≥ N . Pick nk such that k ≥ K and nk ≥ N . for all n ≥ N we have

d(a, xn) ≤ d(a, xnk) + d(xnk , xn) < ε/2 + ε/2 = ε

so that (xn)n≥1 tends to a as required. �

Remark 10.31. This proof is mutatis mutandi the same as the one which proves
that R is complete. Of course R is not compact, but a Cauchy sequence is bounded
and so lies in some closed interval, which is compact by the Heine-Borel theorem.

Remark 10.32. (Non-examinable) There is a “better” notion of boundedness for
metric spaces which is known as total boundedness. A metric space is totally
bounded if for any ε > 0 there is a finite set of point {x1, x2, . . . , xn} such that
X =

⋃
1≤i≤nB(xi, ε). It turns out that a metric space is compact if and only if it

is sequentially compact, if and only if it is complete and totally bounded.

Finally we note here a simple result which will be useful later.

Lemma 10.33. Let (X, d) be a metric space and suppose K ⊆ U ⊆ X where K is
compact and U is open. Then there is an ε > 0 such that for any z ∈ K we have
B(z, ε) ⊆ U .

Proof. We give a proof using sequential compactness. Suppose for the sake of
contradiction that no such ε exists. Then for each n ∈ N we may find sequences
xn ∈ K and yn ∈ U c with |xn − yn| < 1/n. But since K is sequentially compact
we can find a convergent subsequence of (xn), say (xnk) which converges to p ∈ K.
But then it follows (ynk) also converges to p, which is impossible since p ∈ K ⊆ U
while (ynk) is a sequence in the U c and as U c is closed it must contain all its limit
points. �
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11. The Complex Plane: topology and geometry.

For the rest of the course we will study functions on C the complex plane,
focusing on those which satisfy the complex analogue of differentiability. We will
thus need the notions of convergence and limits which C possesses because it is a
metric space (in fact normed vector space).

In this regard, the complex plane is just R2 and we have seen that there are a
number of norms on R2 which give us the same notion of convergence (and open
sets). The additional structure of multiplication which we equip R2 with when we
view it as the complex plane however, makes it natural to prefer the Euclidean one
|z| =

√
(Re(z)2 + Im(z)2. More explicitly, if z = (a, b) and w = (c, d) are vectors

in R2, then we define their product to be

z.w = (ac− bd, ad+ bc).

It is straight-forward, though a bit tedious, to check that this defines an associative,
commutative multiplication on R2 such that every non-zero element has a multi-
plicative inverse: if z = (a, b) 6= (0, 0) has z−1 = (a,−b)/(a2 + b2). The number
(1, 0) is the multiplicative identity (and so is denoted 1) while (0, 1) is denoted i (or
j if you’re an engineer) and satisfies i2 = −1. Since (1, 0) and (0, 1) form a basis for
R2 we may write any complex number z uniquely in the form a+ ib where a, b ∈ R.
We refer to a and b as the real and imaginary parts of z, and denote them by <(z)
and =(z) or Re(z) and Im(z) respectively.

Definition 11.1. If z = (a, b) we write z̄ = (a,−b) for the complex conjugate of z.
It is easy to check that zw = z̄.w̄ and z + w = z̄+ w̄. The Euclidean norm on R2 is
related to the multiplication of complex numbers by the formula |z| =

√
zz̄, which

moreover makes it clear that |zw| = |z||w|. (We call such a norm multiplicative).
If z 6= 0 then we will also write arg(z) ∈ R/2πZ for the angle z makes with the
positive half of the real axis.

Because subsets of the complex plane can have a much richer structure than
subsets of the real line, the topological material we developped in the first half of
the course will be indespensible in understanding complex differentiable functions.
We will need the notions of completeness, compactness, and connectedness, along
with the basic notions of open and closed sets.

Definition 11.2. A connected open subset D of the complex plane will be called
a domain. As we have already seen, an open set in C is connected if and only if it
is path-connected.

We will also use the notations of closure, interior and boundary of a subset of
the complex plane.

The diameter diam(X) of a set X is sup{|z − w| : z, w ∈ X}. A set is bounded
if and only if it has finite diameter.

Recall that the Heine-Borel theorem in the case of R2 ensures that a subset
X ⊆ C is compact (that is, every open covering has a finite subcover) if and only
if it is closed and bounded.

11.1. Circles and lines.

Lemma 11.3. A line L is the complex plane can be described as the locus {z ∈
C : =(az) = b} where |a| = 1 and 0 ≤ arg(a) < π, and b ∈ R. A circle C may
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be described as the locus {z ∈ C : |z − c| = r} where r ∈ R>0 and c ∈ C. The
parameters a, b, c, k are uniquely determined by L and C respectively.

Proof. First note that the real axis is the locus {z ∈ C : =(z) = 0}, thus we can
obtain the equation of any line L by using an isometry to move it to the real axis.
More precisely, suppose that L is a line and t ∈ L. Then translating by −t we
obtain a new line L1 through the origin. This line makes an angle θ with the
positive real axis, where 0 ≤ θ < π. Rotating by an angle −θ thus moves L1 to
the real axis. It follows that the composition of translation by −t and rotation
by −θ moves L to the real axis. These transformations are given by z 7→ z − t
and z 7→ az respectively, where a = e−iθ, thus their composition is z 7→ az − at,
and hence L = {z ∈ C : =(az − at) = 0}. Taking b = −=(zt) we find that
L = {z ∈ C : =(az) = b} as required. The value of a is clearly uniquely determined
by L, while if we pick another point s ∈ L, note that =(as− at) = =(a(s− t)) = 0,
since s − t is in the direction of L, and hence at an angle θ with the real axis, so
that a(s− t) = e−iθ(s− t) is real.

For the second part, if C has centre c ∈ C and radius r > 0 then clearly C =
{z ∈ C : |z − c| = r}. The uniqueness of r and c is clear. �

Lemma 11.4. Any line or circle can be described as {z ∈ C : |z − a| = k|z − b|},
where a, b ∈ C and k ∈ (0, 1] and a 6= b. If k = 1 one obtains a line, while if k < 1
one obtains a circle. The parameters a, b, k are not unique.

Proof. Let Ca,b,k = {z ∈ C : |z− a| = k|z− b|}. First suppose that k < 1. Then we
have:

|z − a| = k|z − b| ⇐⇒ |z − a|2 = k2|z − b|2

⇐⇒ zz̄ − az̄ − āz + aā = k2(zz̄ − bz̄ − b̄z + bb̄)

⇐⇒ (1− k2)zz̄ − (a− k2b)z̄ − (ā− k2b̄)z = −aā+ k2bb̄

⇐⇒ |z − (a− k2b)

1− k2
|2 − |a|

2 − k2(ab̄+ āb) + k4|b|2

(1− k2)2
=
k2|b|2 − |a|2

1− k2

⇐⇒ |z − a− k2b

1− k2
|2 =

k2(|a|2 − ab̄− āb+ |b|2)

(1− k2)2

⇐⇒ |z − a− k2b

1− k2
|2 =

k2

(1− k2)2
|a− b|2.

Thus Ca,b,k is a circle of radius k
1−k2 |a − b| and centre a−k2b

1−k2 . If k = 1, then
Ca,b,1 is just the locus of points equidistant from a and b, which is clearly a line
(explicitly it is the line through (a+ b)/2 perpendicular to the line through a and
b).

We have thus shown that the loci Ca,b,k are either lines or circles. Next we show
that any line or circle may be described in this form. If L is a line, picking any two
points a, b equidistant to L we see that L = Ca,b,1. Now suppose that C is a circle.
If T : C → C is the transformation z 7→ rz + s (where r 6= 0), then it is easy to
check that Ca,b,k = T (C(a−s)/r,(b−s)/r,k), thus the set of circles of the from Ca,b,k is
preserved under the action of the group of affine linear transformations. But since
we can transform any circle in C to any other circle using such transformations, it
follows that every circle occurs as a locus Ca,b,k for some a, b ∈ C, k ∈ (0, 1).

�
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Remark 11.5. Let S1 = {z ∈ C : |z| = 1} be the unit circle in C. The proof of the
above Lemma shows that if we take w0 with 0 < |w0| < 1 and let w1 = w0/|w0|2
and k = |w0|, then S1 = Cw0,w1,k. Thus, just as for lines, the set of parameters
(a, b, k) such that Ca,b,k corresponds to a particular circle is infinite. The points a
and b are said to be in inversion with respect to the circle C = Ca,b,k.

12. Complex differentiability

If D is an open subset of C and f : D → C is a function, we say that f is
holomorphic (or complex differentiable) at z0 ∈ D if the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists, and as usual when it exists we denote it by f ′(z0). Thus the definition at
least formally is exactly as in the case of a real variable. Notice however that,
unlike in the case of R, z may tend to z0 is any direction, and in fact it turns out
that the existence of the limit is a stronger condition than it might appear at first
sight. It will turn out that the theory of complex differentiable functions is very
different to that of a real variable, with many results which are quite false for the
real case holding for the complex case. For example, we will see that if a function is
complex differentiable then it is infinitely differentiable, whereas the corresponding
statement for real functions is easily seen to be false.

Just as in the case of a real variable, we have the following reformulation of
differentiability condition:

Lemma 12.1. Let f : D → C be a function defined on an open subset D of C.
Then f is holomorphic at z0 ∈ D with derivative f ′(z0) if and only if there is a
function ε : D → C which is continuous at z0 with ε(z0) = 0 satisfying

f(z) = f(z0) + f ′(z0)(z − z0) + (z − z0)ε(z).

Proof. Rearranging the equation it is easy to see that it is equivalent to

ε(z) =

{
f(z)−f(z0)

z−z0 − f ′(z0), z 6= z0,

0 z = z0.

The continuity of ε at z = z0 is then clearly equivalent to f being holomorphic at
z0. �

The Lemma shows that f is holomorphic at z0 if it has a “best linear approxima-
tion” in the sense that the error f(z)− (f(z0) + (z− z0)f ′(z)) tends to zero super-
linearly. (In the case of one real variable, the graph of z 7→ f(z0) + (z − z0)f ′(z0)
is just the tangent line to the graph of f at z0.)

Although we will see that the condition of complex differentiability is much
stronger than it is in the real-variable case, the similarity of the two definitions
shows us immediately the standard properties of differentiablility still hold in the
complex case:

Proposition 12.2. Let U be an open subset of C and let f, g be complex-valued
functions on U .

(1) If f, g are differentiable at z0 ∈ U then f + g and fg are differentiable at
z0 with

(f + g)′(z0) = f ′(z0) + g′(z0); (f.g)′(z0) = f ′(z0).g(z0) + f(z0).g′(z0).
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(2) If f, g are differentiable at z0 and g(z0) 6= 0 and g′(z0) 6= 0 then f/g is
differentiable at z0 with

(f/g)′(z0) =
f ′(z0)g(z0)− f(z0)g′(z0)

g′(z0)2
.

(3) If U and V are open subsets of C and f : V → U and g : U → C where
f is complex differentiable at z0 ∈ V and g is complex differentiable at
f(z0) ∈ U the g ◦ f is complex differentiable at z0 with

(g ◦ f)′(z0) = g′(f(z0)).f ′(z0).

Proof. These are proved in exactly the same way as they are for a function of a
single real variable. �

Just as for a single real variable, the basic rules of differentiation allow one
to check that polynomial functions are differentiable: Using the product rule and
induction one sees that zn has derivative nzn−1 for all n ≥ 0 (as a constant obviously
has derivative 0). Then by linearity it follows every polynomial is differentiable.

12.1. Differentiability in R2. Since C is just R2 with the additional structure
of multiplication, if D is open in C then a function f : D → C is in particular
a function on D taking values in R2. There is a notion of differentiablility for
functions on open subsets of R2 (and indeed Rn for any positive integer n) which
we touch on here in order to get a better understanding of the condition of complex
differentiability.

Definition 12.3. Suppose U is an open subset of R2 and that f : U → R2 is a
function. We say that f is differentiable at z0 = (x, y) if there is a linear map
L : R2 → R2 and a function ε : U → R2 such that

f(w) = f(z0) + L(w − z0) + |w − z0|ε(w),

where |ε(w)| → 0 as w → z0 (and by convention we set ε(z0) = 0). If it exists, the
linear map L is unique and is denoted Dfz0 (or sometimes Df(z0)).

Given any vector v ∈ R2, we can consider the line {z0 + tv : t ∈ R} through
z0 in the direction of v. Restricting f to that line gives a function of a single real
variable t. The derivative of this function at t = 0 is called the directional derivative
∂vf(z0) of f at z0 in the direction v. Explicitly it is defined to be

∂vf(z0) = lim
t→0

f(z0 + tv)− f(z0)

t
.

When f is differentiable at z0 with derivative Dfz0 then for all t 6= 0 and v ∈ R2

we have
f(z0 + tv)− f(z0)

t
= Dfz0(v) + sign(t)|v|ε(tv)→ L(v),

as t→ 0, (where sign(t) = |t|/t ∈ {±1}) so that the directional derivatives exist for
every v ∈ R2 and moreover ∂v(f)(z0) = Dfz0(v).

In particular, if we take v to be each of the standard basis vectors e1 = (1, 0)t

and e2 = (0, 1)t, then the directional derivatives are just the partial derivatives of
f with respect to x and y:

∂e1f(z0) = ∂xf(z0); ∂e2f(z0) = ∂yf(z0).



METRIC SPACES AND COMPLEX ANALYSIS. 39

When doing computations, it can be useful to break f up into its components,
that is, we write f(x, y) = (f1(x, y), f2(x, y))t where f1 and f2 are real-valued
functions. It is easy to see that ∂vf(z0) = (∂vf1(z0), ∂vf2(z0))t. Now the linear map
Dfz0 can of course be written as a matrix with respect to the standard basis. Since
the matrix of a linear map has columns given by the images of the basis vectors,
it follows that the columns of this matrix are Dfz0(e1) and Dfz0(e2) respectively,
and since these vectors are the directional deriviatives in the directions e1 and e2

respectively we see that

Dfz0 =

(
∂xf1(z0) ∂yf1(z0)
∂xf2(z0) ∂yf2(z0)

)
The matrix representing the total derivative of f at a point is called the Jacobian

matrix. As we have seen, it may be calculated by computing the partial derivatives
of the components of f . While it is possible for the partial derivatives of a function
to exist without the function being differentiable in the sense of Definition 12.3, the
following theorem shows that this does not happen in good situations:

Theorem 12.4. Let U be an open subset of R2 and f : U → R2. Let f(x) =
(f1(x), f2(x))t. If all the partial derivatives of the fi exist and are continuous at
z0 ∈ U then f is differentiable at z0.

The proof of this (although it is not hard – one only needs the definitions and the
single-variable mean-value theorem) is not part of this course. For completeness, a
proof is given in the Appendix.

12.2. The Cauchy-Riemann equations. We return now to the case of a complex
differentiable function f : D → C on an open subset D of C. Viewing C just as R2,
a function f : D → C on an open subset D of C becomes a function to R2 of two
real variables (the real and imaginary parts). Explicitly, if we write z = x+ iy and
f(z) = u+ iv where u and v are real, then f(x, y) = (u(x, y), v(x, y)).

Lemma 12.5. If U is an open subset of C and f : U → C is complex differentiable
at z0 = x0 + iy0 ∈ U then the associated function to R2 is real-differentiable at
(x0, y0).

Proof. If w ∈ C is any complex number then the operation of multiplication by w
defines an R-linear map. Explicitly, if w = a+ ib then the matrix of this linear map
with respect to the standard basis (corresponding to 1, i ∈ C) is:(

a −b
b a

)
If f is differentiable at z0 then letting L be the linear map given by f ′(z0) it follows
immediately that f satisfies the definition of the total real derivative at (x0, y0)
– compare the formulation of complex differentiability given by Lemma 12.1 and
Defintion 12.3. �

Now the matrix for the total derivative is the matrix of partial derivatives of the
components u, v of f , and by the proof of the previous Lemma this matrix is given
by the real and imaginary parts of f ′(z0): indeed if f ′(z0) = r+ is then the matrix
of the total derivative at z0 is

(12.1) Dfz0 =

(
∂xu(z0) ∂yu(z0)
∂xv(z0) ∂yv(z0)

)
=

(
r −s
s r

)
.
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It follows that ∂xu(x0, y0) = ∂yv(x0, y0) = r and ∂xv(x0, y0) = −∂yu(x0, y0) = s.
We record this as a theorem.

Theorem 12.6. (Cauchy-Riemann equations). Let f : U → C be function on an
open subset U of C and let f = u+ iv where u, v are real-valued. Then wherever f
is complex differentiable the functions u and v satisfy

∂xu = ∂yv; ∂xv = −∂yu.

Conversely, if f : U → C is real-differentiable and its real and imaginary parts sat-
isfy the Cauchy-Riemann equations, then f is complex differentiable, with derivative
f ′(z0) = ∂xu+ i∂xv.

Proof. We have already shown this using the definition of the total derivative, but
one can also work directly from the definition of the complex derivative: Suppose
that f is complex differentiable at z0 = x0 + iy0. We have

∂xf(x0, y0) = lim
t→0

f(z0 + t)− f(z0)

t
= f ′(z0),

since we are simply taking the limit defining f ′(z0) in a particular direction (along
the real axis). On the other hand for the partial derivative with respect to y we
have

∂yf(x0, y0) = lim
t→0

f(z0 + it)− f(z0)

t
= i lim

t→0

f(z0 + it)− f(z0)

it
= if ′(z0),

so that f ′(z0) = 1
i ∂yf(z0).

Taking components, we see that ∂xf = (∂xu, ∂xv) and ∂yf = (∂yu, ∂yv), so that
∂xf(z0) = f ′(z0) = 1

i ∂yf(z0) becomes

(∂xu, ∂xv) = (∂yv,−∂yu).

as required. For the converse, observe that if f satisfies the Cauchy-Riemann equa-
tions at z0 ∈ U , then the linear map associated to the matrix of partial deriva-
tives at z0 coincides with that given by multiplication by the complex number
a = ∂xu + i∂yv. But then it follows from the definition of the real derivative
that a satisfies the conditions of Lemma 12.1 so that f ′(z0) = a and f is complex
differentiable as required. �

Remark 12.7. Since the operation of multiplication by a complex number w is a
composition of a rotation (by the argument of w) and a dilation (by the modulus of
w) the matrix of the corresponding linear map is, up to scalar, a rotation matrix.
The Cauchy-Riemann equations just capture this fact for the matrix of the total
(real) derivative of a complex differentiable function.

Definition 12.8. The Cauchy-Riemann equations can be rewritten using certain
partial differential operators: Set

∂z =
1

2
(∂x − i∂y); ∂z̄ =

1

2
(∂x + i∂y).

Theorem 12.9. Let f : U → C be a function on an open subset of C. If f is
complex differentiable at z0 then ∂z̄f(z0) = 0 and f ′(z0) = ∂zf(z0). Moreover if
J(z0) is the matrix of the total derivative of f at z0 ∈ U then

det(J(z0)) = |f ′(z0)|2.
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Proof. The condition ∂z̄(f)(z0) = 0 is easily seen to be equivalent to the Cauchy-
Riemann equations by taking real and imaginary parts. On the other hand, we saw
in the proof of Theorem 12.6 that f ′(z0) = ∂xf(z0) and ∂yf(z0) = if ′(z0), so that

∂zf(z0) =
1

2
(∂xf(z0)− i∂yf(z0)) = f ′(z0)

as required. The last part follows from Equation (12.1) and the identities

det

(
a −b
b a

)
= a2 + b2 = |a+ ib|2,

for any a, b ∈ R. �

Exercise 12.10. Show that if T : C → C is any real linear map (that is, viewing
C as R2 we have T : R2 → R2 is a linear map) then there are unique a, b ∈ C such
that T (z) = az + bz̄. (Hint: note that the map z 7→ az + bz̄ is R-linear. What
matrix does it correspond to as a map from R2 to itself? )

We finish this section with a result which gives a useful sufficient condition for
a function to be complex differentiable.

Theorem 12.11. Suppose that U is an open subset of C and let f : U → C be a
function. If f is differentiable as a function of two real variables with continuous
partial derivatives satisfying the Cauchy-Riemann equations on U , then f is complex
differentiable on U .

Proof. Since the partial derivatives are continuous, Theorem 12.4 shows that f is
differentiable as a function of two real variables, with total derivative given by the
matrix of partial derivatives. If f also satisfies the Cauchy-Riemann equations,
then by Theorem 12.6 it follows it is complex differentiable as required. �

Example 12.12. The previous theorem allows us to show that the complex log-
arithm is a holomorphic function – up to the issue that we cannot define it con-
tinuously on the whole complex plane! The function z 7→ ez is not injective, since
ez+2nπi = ez for all n ∈ Z thus it cannot have an inverse defined on all of C. How-
ever, since ex+iy = ex(cos(y) + i sin(y)), it follows that if we pick a ray through the
origin, say B = {z ∈ C : =(z) = 0,<(z) ≤ 0}, then we may define Log : C\B → C
by setting Log(z) = log(|z|) + iθ where θ ∈ (−π, π] is the argument of z. Clearly
eLog(z) = z, while Log(ez) differs from z by an integer multiple of 2πi.

We claim that Log is complex differentiable: To show this we use Theorem 12.11.

Indeed the function L(x, y) = (log(
√
x2 + y2), θ) = (L1, L2) has

∂xL1 =
x

x2 + y2
, ∂yL1 =

y

x2 + y2
,

∂xL2 = − y

x2 + y2
, ∂yL2 =

x

x2 + y2
.

where in calculating the partial derivatives of L2 we used that it is equal to
arctan(y/x) in (−π/2, π/2) (and other similar expressions in the other two quad-
rants). Examining the formulae we see that the partial derivatives are all con-
tinuous, and obey the Cauchy-Riemann equations, so that Log is indeed complex
differentiable.
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12.3. Harmonic functions. Recall that the two-dimensional Laplace operator ∆
is the differential operator ∂2

x+∂2
y (defined on functions f : R2 → R which are twice

differentiable in the sense that their partial derivatives are again differentiable).
A function which is in the kernel of the Laplace operator is said to be harmonic,
that is, a function u : D → R defined on an open subset D of R2 is harmonic if
∆(u) = ∂2

xu+∂2
yu = 0. There is a strong connection between complex differentiable

functions and harmonic functions, as the next result shows.

Lemma 12.13. Suppose that U is an open subset of C and f : U → C is complex
differentiable and f(z) = u(z) + iv(z) are its real and imaginary parts. If u and v
are twice continuously21 differentiable then they are harmonic on U .

Proof. We have already seen that u and v satisfy the Cauchy-Riemann equations.
Thus we have

∂2
x(u) = ∂x(∂yv) = ∂y(∂xv) = −∂y(∂yu) = ∂2

yu,

so that (∂2
x + ∂2

y)(u) = 0, that is u is harmonic. Note that in the second equality
we used the symmetry of mixed partial deriviatives ∂x∂yu = ∂y∂xu which holds
provided u is twice continuously differentiable. To see that v is harmonic one can
argue similarly, or note that v is the real part of −if , which is clearly complex
differentiable. �

Remark 12.14. We will shortly see that if f = u+iv is complex differentiable then it
is in fact infinitely complex differentiable. Since we have seen that f ′ = ∂xf = 1

i ∂yf
it follows that u and v are in fact infinitely differentiable so the condition in the
previous lemma on the existence and continuity of their second derivatives in fact
holds automatically. For a proof of the fact that the mixed partial derivatives of a
twice continuously differentiable function are equal, see the Appendix.

Lemma 12.13 motivates the following definition:

Definition 12.15. If u : R2 → R is a harmonic function, we say that v : R2 → R
is a harmonic conjugate of u if f(z) = u+ iv is holomorphic.

Notice that if u is harmonic, it is twice differentiable so that its partial derivatives
are continuously differentiable. It follows that a function v is a harmonic conjugate
precisely if the pair (u, v) satisfy the Cauchy-Riemann equations. Provided we can
integrate these equations, a harmonic conjugate will exist, and we will show later
that, at least when the second partial derivatives are continuous, this can always
been done locally in the plane.

12.4. Power series. Another important family of examples are the functions which
arise from power series. We review here the main results about complex power series
which were proved in Analysis II last year:

Definition 12.16. Let (an)n≥0 be a sequence of complex numbers. Then we have
an associated sequence of polynomials sn(z) =

∑n
k=0 akz

k. Let S be the set on
which this sequence converges pointwise, that is

S = {z ∈ C : lim
n→∞

sn(z) exists}.

Note that since sn(0) = a0 we have 0 ∈ S so in particular S is nonempty. On the
set S, we can define a function s(z) = limn sn(z) =

∑∞
k=0 akz

k which we call a

21That is, all of their second partial deriviatives exist and are continuous.
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power series. We define the radius of convergence R of the power series
∑
k≥0 akz

k

to be sup{|z| : z ∈ S} (or ∞ if S is unbounded).
By convention, given any sequence of complex numbers (cn)n≥0 we write

∑∞
k=0 ckz

k

for the corresponding power series (even though it may be that it converges only
for z = 0).

We can give an explicit formula for the radius of convergence using the notion
of lim sup which we now recall:

Definition 12.17. If (an)n≥0 is a sequence of real numbers, set sn = sup{ak : k ≥
n} ∈ R ∪ {∞} (where we take sn = ∞ if {ak : k ≥ n} is not bounded above).
Then the sequence (sn) is either constant and equal to ∞ or eventually becomes
a decreasing sequence of real numbers. In the first case we set lim supn an = ∞,
whereas in the second case we set lim supn an = limn sn (which is finite if (sn) is
bounded below, and equal to −∞ otherwise).

Lemma 12.18. Let
∑
k≥0 akz

k be a power series, let S be the subset of C on which
it converges and let R be its radius of convergence. Then we have

B(0, R) ⊆ S ⊆ B̄(0, R).

The series converges absolutely on B(0, R) and if 0 ≤ r < R then it converges
uniformly on B̄(0, r). Moreover, we have

1/R = lim sup
n
|an|1/n.

Proof. Let L = lim supn |an|1/n ∈ [0,∞]. If L = 0 then the statement should
be understood to say that the radius of convergence R is ∞, while if L = ∞ we
take R = 0. These two cases are in fact similar but easier than the case where
L ∈ (0,∞), so we will only give the details for the case where L is finite and
positive. Let sn = sup{|ak|1/k : k ≥ n} so that L = limn→∞ sn.

If 0 < s < 1/L we can find an ε > 0 such that (L + ε).s = r < 1. Thus by
definition, for sufficiently large n we have |an|1/n ≤ sn < L+ ε so that if |z| ≤ s we
have

|an||z|n ≤ [(L+ ε)|z|]n ≤ rn,

and hence by the comparison test,
∑∞
n=0 anz

n converges absolutely and uniformly
on B̄(0, s). It follows the power series converges everywhere in B(0, 1/L).

On the other hand, if |z| > 1/L we can find an ε1 > 0 such that |z|(L − ε1) =
r > 1. But then for all k we have sk ≥ L since (sn) is decreasing, and hence by
the approximation property for each k we can find an nk ≥ k with |ank |1/nk >
sk−ε1 ≥ L−ε and hence |ankznk | > rk. Thus |anzn| has a subsequence which does
not tend to zero, so the series cannot converge. It follows the radius of convergence
of
∑∞
n=0 anz

n is 1/L as claimed.
�

The next lemma is a relatively straight-forward consequence of standard algebra
of limits style results:

Lemma 12.19. Let s(z) =
∑∞
k=0 akz

k and t(z) =
∑∞
k=0 bkz

k be power series with
radii of convergence R1 and R2 respectively and let T = min{R1, R2}.



44 KEVIN MCGERTY.

(1) Let cn =
∑
k+l=n akbl, then the power series

∑∞
n=0 cnz

n has radius of con-
vergence at least T and if |z| < T we have

∞∑
n=0

cnz
n = s(z)t(z).

Thus the product of power series is a power series.
(2) If s(z) and t(z) are as above, then

∑∞
k=0(ak+bk)zk is a power series which

converges to s(z) + t(z) in B(0, T ), thus the sum of power series is again a
power series.

Proof. This was established in Prelims Analysis II. Note that T is only a lower
bound for the radius of convergence in each case – it is easy to find examples where
the actual radius of convergence of the sum or product is strictly larger than T . �

The behaviour of a power series at its radius of convergence is in general a rather
complicated phenomenon. The following result, which we shall not prove, gives
some information however. Some of the ideas involved in its proof are investigated
in Problem Set 4.

Theorem 12.20. (Abel’s theorem:) Suppose that (an) is a sequence of complex
numbers and

∑∞
n=0 an exists. Then the series

∑∞
n=0 anz

n converges for |z| < 1 and

lim
r∈(−1,1)
r↑1

( ∞∑
n=0

anr
n
)

=

∞∑
n=0

an.

Proof. Note that since the series
∑∞
n=0 anz

n converges at z = 1 by assumption, its
radius of convergence is at least 1, so that the first statement holds. For the second
see for example Exercise 15 of Chapter 1 in the book of Stein and Shakarchi. �

Proposition 12.21. Let s(z) =
∑
k≥0 akz

k be a power series, let S be the domain
on which it converges, and let R be its radius of convergence. Then power series
t(z) =

∑∞
k=1 kakz

k−1 also has radius of convergence R and on B(0, R) the power
series s is complex differentiable with s′(z) = t(z). In particular, it follows that a
power series is infinitely complex differentiable within its radius of convergence.

Proof. First note that the power series
∑∞
k=1 kakz

k−1 clearly has the same radius of
convergence as

∑∞
k=1 kakz

k, and by Lemma 12.18 this has radius of convergence22

lim sup
k
|kak|1/k = lim

k
(k1/k) lim sup

k
|ak|1/k = lim sup |ak|1/k = R,

since limk→∞ k1/k = 1. Thus s(z) =
∑∞
k=0 akz

k and t(z) =
∑∞
k=1 kakz

k−1 have
the same radius of convergence. To see that s(z) is complex differentiable with
derivative t(z), consider the sequence of polynomials fn in two complex variables:

fn(z, w) = an(

n−1∑
i=0

ziwn−1−i), (n ≥ 1).

Fix ρ < R, then for (z, w) with |z|, |w| ≤ ρ we have

|fn(z, w)| =
∣∣an n−1∑

i=0

ziwn−i
∣∣ ≤ |an| n−1∑

i=0

|z|i|w|n−i ≤ |an|nρn−1

22This uses a standard property of lim sup which is proved for completeness in Lemma 23.3 in
Appendix I.
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It therefore follows from the WeierstrassM -test with23 that the series
∑
n≥0 fn(z, w)

converges uniformly (and absolutely) on {(z, w) : |z|, |w| ≤ ρ} to a function F (z, w).
In particular, it follows that F (z, w) is continuous. But since

∑n
k=1 fk(z, z) =∑n

k=1 kakz
k−1, it follows that F (z, z) = t(z). On the other hand, for z 6= w we

have
∑k−1
i=0 z

iwk−i = zk−wk
z−w , so that

F (z, w) =

∞∑
k=0

ak
zk − wk

z − w
=
s(z)− s(w)

z − w
,

hence it follows by the continuity of F that if we fix z with |z| < ρ then

lim
z→w

s(z)− s(w)

z − w
= F (z, z) = t(z).

Since ρ < R was arbitrary, we see that s(z) is differentiable on B(0, R) with deriv-
ative t(z).

Finally, since we have shown that any power series is differentiable within its
radius of convergence and its derivative is again a power series with the same radius
of convergence, it follows by induction that any power series is in fact infinitely
differentiable within its radius of convergence. �

Example 12.22. The previous theorem gives us a large supply of complex differ-
entiable functions. For example,

exp(z) =

∞∑
n=0

zn

n!
, cos(z) =

∞∑
n=0

(−1)n
z2n

(2n)!
, sin(z) =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
,

are all complex differentiable on the whole complex plane (since R = ∞ in each
case). Note that one can use the above theorem to show that cos(z)2 + sin(z)2 = 1
for all z ∈ C, but since sin(z) and cos(z) are not in general real, this does not
imply that | sin(z)| or | cos(z)| at most 1. (In fact it is easy to check that they
are both unbounded on C). Using what we have already established about power
series it is also easy to check that the complex sin function encompases both the
real trigonometric and real hyperbolic functions, indeed:

sin(a+ ib) = sin(a) cosh(b) + i cos(a) sinh(b).

Example 12.23. Let s(z) =
∑∞
n=1

zn

n . Then s(z) has radius of convergence 1,
and in B(0, 1) we have s′(z) =

∑∞
n=0 z

n = 1/(1 − z), thus this power series is
a complex differentiable function which extends the function − log(1 − z) on the
interval (−1, 1) to the open disc B(0, 1) ⊂ C. We will see later that we will not be
able to extend the function log to a complex differentiable function on C\{0} – we
will only be able to construct a “multi-valued” extension.

Example 12.24. Recall from Prelims Analysis that the binomial theorem gener-
alizes to non-integral exponents a ∈ C if we define

(
a
k

)
= 1

k!a.(a− 1) . . . (a− k+ 1).
Indeed we then have

(1 + z)a =

∞∑
k=0

(
a

k

)
zk,

23We know
∑

n≥0 Mn = |an|nρn−1 converges since ρ < R and t(z) has radius of convergence

R.
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for all z with |z| < 1. Indeed it is easy to see from the ratio test that this series
has radius of convergence equal to 1, and then one can check that if f(z) denotes
the function given by the series inside B(0, 1), then zf ′(z) = af(z).

Note that, slightly more generally, we can work with power series centred at an
arbitrary point z0 ∈ C. Such power series are functions given by an expression of
the form

f(z) =
∑
n≥0

an(z − z0)n.

All the results we have shown above immediately extend to these more general
power series, since if

g(z) =
∑
n≥0

anz
n,

then the function f is obtained from g simply by composing with the translation
z 7→ z − z0. In particular, the chain rule shows that

f ′(z) =
∑
n≥1

nan(z − z0)n−1.

13. Branch cuts

It is often the case that we study a holomorphic function on a domain D ⊆ C
which does not extend to a function on the whole complex plane.

Example 13.1. Consider the square root “function” f(z) = z1/2. Unlike the case
of real numbers, every complex number has a square root, but just as for the real
numbers, there are two possiblities unless z = 0. Indeed if z = x+iy and w = u+iv
has w2 = z we see that

u2 − v2 = x; 2uv = y,

and so

u2 =
x+

√
x2 + y2

2
, v2 =

y +
√
x2 + y2

2
.

where the requirement that u2, v2 are nonnegative determines the signs. Hence
taking square roots we obtain the two possible solutions for w satifying w2 = z.
(Note it looks like there are four possible sign combinations in the above, however
the requirement that 2uv = y means the sign of u determines that of v.) In polars
it looks simpler: if z = reiθ then w = ±r1/2eiθ/2. Indeed this expression gives us a
continuous choice of square root except at the positive real axis: for any z ∈ C we
may write z uniquely as reiθ where θ ∈ [0, 2π), and then set f(z) = r1/2eiθ/2. But
now for θ small and positive, f(z) = r1/2eiθ has small positive argument, but if
z = re(2π−ε)i we find f(z) = r1/2e(π−ε/2)i, thus f(z) in the first case is just above the
positive real axis, while in the second case f(z) is just below the negative real axis.
Thus the function f is only continuous on C\{z ∈ C : =(z) = 0,<(z) > 0}. Using
Theorem 12.1 you can check f is also holomorphic on this domain. The positive
real axis is called a branch cut for the multi-valued function z1/2. By chosing
different intervals for the argument (such as (−π, π] say) we can take different cuts
in the plane and obtain different branches of the function z1/2 defined on their
complements.

We formalize these concepts as follows:
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Definition 13.2. A multi-valued function or multifunction on a subset U ⊆ C
is a map f : U → P(C) assigning to each point in U a subset24 of the complex
numbers. A branch of f on a subset V ⊆ U is a function g : V → C such that
g(z) ∈ f(z), for all z ∈ V . We will be interested in branches of multifunctions
which are holomorphic.

Remark 13.3. In order to distinguish between multifunctions and functions, it is
sometimes useful to introduce some notation: if we wish to consider z 7→ z1/2 as a
multifunction, then to emphasize that we mean a multifunction we will write [z1/2].
Thus [z1/2] = {w ∈ C : w2 = z}. Similarly we write [Log(z)] = {w ∈ C : ew = z}.
This is not a uniform convention in the subject, but is used, for example, in the
text of Priestley.

Thus the square root z 7→ [z1/2] is a multifunction, and we saw above that we can
obtain holomorphic branches of it on a cut plane C\R where R = {teiθ : t ∈ R≥0}.
The point here is that both the origin and infinity as “branch points” for the
multifunction [z1/2].

Definition 13.4. Suppose that f : U → P(C) is a multi-valued function defined
on an open subset U of C. We say that z0 ∈ U is not a branch point of f if there
is an open disk25 D ⊆ U containing z0 such that there is a holomorphic branch of
f defined on D. We say z0 is a branch point otherwise. When C\U is bounded, we
say that f does not have a branch point at ∞ if there is a branch of f defined on
C\B(0, R) ⊆ U for some R > 0. Otherwise we say that ∞ is a branch point of f .

A branch cut for a multifunction f is a curve in the plane on whose complement
we can pick a holomorphic branch of f . Thus a branch cut must contain all the
branch points.

Example 13.5. Another important example of a multi-valued function which
we have already discussed is the complex logarithm: as a multifunction we have
Log(z) = {log(|z|) + i(θ + 2nπ) : n ∈ Z} where z = |z|eiθ. To obtain a branch of
the multifunction we must make a choice of argument function arg : C→ R we may
define

Log(z) = log(|z|) + i arg(z),

which is a continuous function away from the branch cut we chose. By convention,
the principal branch of Log is defined by taking arg(z) ∈ (−π, π].

Another important class of examples of multifunctions are the fractional power
multifunctions z 7→ [zα] where α ∈ C: These are given by

z 7→ exp(α.[Log(z)]) = {exp(α.w) : w ∈ C, ew = z}
Note this is includes the square root multifunction we discussed above, which can
be defined without the use of exponential function. Indeed if α = m/n is rational,
m ∈ Z, n ∈ Z>0, then [zα] = {w ∈ C : wm = zn}. For α ∈ C\Q however we can
only define [zα] using the exponential function. Clearly from its definition, anytime
we choose a branch L(z) of [Log(z)] we obtain a corresponding branch exp(α.L(z))
of [zα]. If L(z) is the principal branch of [Log(z)] then the corresponding branch
of [zα] is called the principal branch of [zα].

24We use the notation P(X) to denote the power set of X, that is, the set of all subsets of X.
25In fact any simply-connected domain – see our discussion of the homotopy form of Cauchy’s

theorem.
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Example 13.6. Let F (z) be the multi-function

[(1 + z)α] = {exp(α.w) : w ∈ C, exp(w) = 1 + z}.
Then within the open ball B(0, 1) the power series s(z) =

∑∞
n=0

(
α
k

)
zk yields a

holomorphic branch of [(1 + z)α]. Indeed we have seen that (1 + z)s′(z) = α.s(z),
and if we take the principal branch L(z) of [Log(z)] then on B(0, 1) we have26

d

dz
(L(s(z))) = s′(z)/s(z) = α/(1 + z) =

d

dz
(αL(1 + z))

so that L(s(z)) = α.L(1+z)+c for some constant c (as B(0, 1) is connected) which
by evaluating at z = 0 we find is zero. Finally, it follows that s(z) = exp(αL(1+z))
so that s(z) ∈ [(1 + z)α] as required.

Example 13.7. A more interesting example is the function f(z) = [(z2 − 1)1/2].
Using the principal branch of the square root function, we obtain a branch f1 of
f on the complement of E = {z ∈ C : z2 − 1 ∈ (−∞, 0]}, which one calculates is
equal to (−1, 1) ∪ iR. If we cross either the segment (−1, 1) or the imaginary axis,
this branch of f is discontinuous.

To find another branch, note that we may write f(z) =
√
z − 1

√
z + 1, thus we

can take the principal branch of the square root for each of these factors. More
explicity, if we write z = 1 + reiθ1 = −1 + seiθ2 where θ1, θ2 ∈ (−π, π] then we get
a branch of f given by f2(z) =

√
rs.ei(θ1+θ2)/2. Now the factors are discontinuous

on (−∞, 1] and (∞,−1] respectively, however let us examine the behaviour of their
product: If z crosses the negative real axis at =(z) < −1 then θ1 and θ2 both
jumps by 2π, so that (θ1 + θ2)/2 jumps by 2π, and hence exp((θ1 + θ2)/2) is in
fact continuous. On the other hand, if we cross the segment (−1, 1) then only the
factor

√
z − 1 switches sign, so our branch is discontinuous there. Thus our second

branch of f is defined away from the cut [−1, 1].

Example 13.8. The branch points of the complex logarithm are 0 and infinity:
indeed if z0 6= 0 then we can find a half-plane say H = {z ∈ C : =(z) > 0} (where
|a| = 1) such that z0 ∈ H. We can chose a continuous choice of argument function
on H, and this gives a holomorphic branch of Log defined on H and hence on the
disk B(z0, r) for r sufficiently small. The logarithm also has a branch point at
infinity, since we cannot chose a continous argument function on C\B(0, R) for any
R > 0. (We will return to this point when discussing the winding number later in
the course.)

Note that if f(z) = [
√
z2 − 1] then the second of our branches f2 discussed above

shows that f does not have a branch point at infinity, whereas both 1 and −1 are
branch points – as we move in a sufficiently small circle around we cannot make
a continuous choice of branch. One can given a rigorous proof of this using the
branch f2: given any branch g of [

√
z2 − 1] defined on B(1, r) for r < 1 one proves

that g = ±f2 so that g is not continuous on B(0, r) ∩ (−1, 1). See Problem Sheet
4, question 5, for more details.

Example 13.9. A more sophisticated point of view on branch points and cuts
uses the theory of Riemann surfaces. As a first look at this theory, consider the
multifunction f(z) = [

√
z2 − 1] again. Let Σ = {(z, w) ∈ C2 : w2 = z2 − 1} (this is

26Any continuous branch `(z) of [Log(z)] is holomorphic where it is defined and satisfies
exp(`(z)) = z, hence by the chain rule one obtains `′(z) = 1/z.
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an example of a Riemann surface). Then we have two maps from Σ to C, projecting
along the first and second factor: p1(z, w) = z and p2(z, w) = w. Now if g(z) is
a branch of f , it gives us a map G : C → Σ where G(z) = (z, g(z)). If we take
f2(z) =

√
z − 1

√
z + 1 (using the principal branch of the square root function in

each case, then let Σ+{(z, f2(z)) : z /∈ [−1, 1]} and Σ− = {(z,−f2(z)) : z /∈ [−1, 1]},
then Σ+∪Σ− covers all of Σ apart from the pairs (z, w) where z ∈ [−1, 1]. For such

z we have w = ±i
√

1− z2, and Σ is obtained by gluing together the two copies Σ+

and Σ− of the cut plane C\[−1, 1] along the cut locus [−1, 1]. However, we must
examine the discontinuity of g in order to see how gluing works: the upper side of
the cut in Σ+ is glued to the lower side of the cut in Σ− and similarly the lower
side of the cut in Σ+ is glued to the upper side of Σ−.

Notice that on Σ we have the (single-valued) function p2(z, w) = w, and any
map q : U → Σ from an open subset U of C to Σ such that p1 ◦ q(z) = z gives a

branch of f(z) =
√
z2 − 1 given by p2 ◦ q. Such a function is called a section of p1.

Thus the multi-valued function on C becomes a single-valued function on Σ, and
a branch of the multifunction corresponds to a section of the map p1 : Σ → C. In
general, given a multi-valued function f one can construct a Riemann surface Σ by
gluing together copies of the cut complex plane to obtain a surface on which our
multifunction becomes a single-valued function.

14. Paths and Integration

Paths will play a crucial role in our development of the theory of complex dif-
ferentiable functions. In this section we review the notion of a path and define the
integral of a continuous function along a path.

14.1. Paths. Recall that a path in the complex plane is a continuous function
γ : [a, b] → C. A path is said to be closed if γ(a) = γ(b). If γ is a path, we will
write γ∗ for its image, that is

γ∗ = {z ∈ C : z = γ(t), some t ∈ [a, b]}.

Although for some purposes it suffices to assume that γ is continuous, in order
to make sense of the integral along a path we will require our paths to be (at least
piecewise) differentiable. We thus need to define what we mean for a path to be
differentiable:

Definition 14.1. We will say that a path γ : [a, b] → C is differentiable if its real
and imaginary parts are differentiable as real-valued functions. Equivalently, γ is
differentiable at t0 ∈ [a, b] if

lim
t→t0

γ(t)− γ(t0)

t− t0
exists, and denote this limit as γ′(t). (If t = a or b then we interpret the above as
a one-sided limit.) We say that a path is C1 if it is differentiable and its derivative
γ′(t) is continuous.

We will say a path is piecewise C1 if it is continuous on [a, b] and the interval
[a, b] can be divided into subintervals on each of which γ is C1. That is, there is
a finite sequence a = a0 < a1 < . . . < am = b such that γ|[ai,ai+1] is C1. Thus in
particular, the left-hand and right-hand derivatives of γ at ai (1 ≤ i ≤ m− 1) may
not be equal.
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Remark 14.2. Note that a C1 path may not have a well-defined tangent at every
point: if γ : [a, b]→ C is a path and γ′(t) 6= 0, then the line {γ(t)+sγ′(t) : s ∈ R} is
tangent to γ∗, however if γ′(t) = 0, the image of γ may have no tangent line there.
Indeed consider the example of γ : [−1, 1]→ C given by

γ(t) =

{
t2 −1 ≤ t ≤ 0
it2 0 ≤ t ≤ 1.

Since γ′(0) = 0 the path is C1, even though it is clear there is no tangent line to
the image of γ at 0.

If s : [a, b] → [c, d] is a differentiable map, then we have the following version of
the chain rule, which is proved in exactly the same way as the real-valued case. It
will be crucial in our definition of the integral of functions f : C→ C along paths.

Lemma 14.3. Let γ : [c, d] → C and s : [a, b] → [c, d] and suppose that s is differ-
entiable at t0 and γ is differentiable at s0 = s(t0). Then γ ◦ s is differentiable at t0
with derivative

(γ ◦ s)′(t0) = s′(t0).γ′(s(t0)).

Proof. Let ε : [c, d]→ C be given by ε(s0) = 0 and

γ(x) = γ(s0) + γ′(s0)(x− s0) + (x− s0)ε(x),

(so that this equation holds for all x ∈ [c, d]), then ε(x) → 0 as x → s0 by the
definition of γ′(s0), i.e. ε is continuous at t0. Substituting x = s(t) into this we see
that for all t 6= t0 we have

γ(s(t))− γ(s0)

t− t0
=
s(t)− s(t0)

t− t0
(
γ′(s(t)) + ε(s(t))

)
.

Now s(t) is continuous at t0 since it is differentiable there hence ε(s(t)) → 0 as
t→ t0, thus taking the limit as t→ t0 we see that

(γ ◦ s)′(t0) = s′(t0)(γ′(s0) + 0) = s′(t0)γ′(s(t0)),

as required. �

Definition 14.4. If φ : [a, b] → [c, d] is continuously differentiable with φ(a) = c
and φ(b) = d, and γ : [c, d] → C is a C1-path, then setting γ̃ = γ ◦ φ, by Lemma
14.3 we see that γ̃ : [a, b]→ C is again a C1-path with the same image as γ and we
say that γ̃ is a reparametrization of γ.

Definition 14.5. We will say two parametrized paths γ1 : [a, b]→ C and γ2 : [c, d]→
C are equivalent if there is a continuously differentiable bijective function s : [a, b]→
[c, d] such that s′(t) > 0 for all t ∈ [a, b] and γ1 = γ2 ◦ s. It is straight-forward
to check that equivalence is indeed an equivalence relation on parametrized paths,
and we will call the equivalence classes oriented curves in the complex plane. We
denote the equivalence class of γ by [γ]. The condition that s′(t) > 0 ensures that
the path is traversed in the same direction for each of the parametrizations γ1 and
γ2. Moreover γ1 is piecewise C1 if and only if γ2 is.

Recall that we saw before (in a general metric space) that any path γ : [a, b]→ C
has an opposite path γ− and that two paths γ1 : [a, b]→ C and γ2 : [c, d]→ C with
γ1(b) = γ2(c) can be concatenated to give a path γ1 ? γ2. If γ, γ1, γ2 are piecewise
C1 then so are γ− and γ1 ? γ2. (Indeed a piecewise C1 path is precisely a finite
concatenation of C1 paths).
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Remark 14.6. Note that if γ : [a, b] → C is piecewise C1, then by choosing a
reparametrization by a function ψ : [a, b] → [a, b] which is strictly increasing and
has vanishing derivative at the points where γ fails to be C1, we can replace γ by
γ̃ = γ ◦ ψ to obtain a C1 path with the same image. For this reason, some texts
insist that C1 paths have everywhere non-vanishing derivative. In this course we
will not insist on this. Indeed sometimes it is convenient to consider a constant
path, that is a path γ : [a, b] → C such that γ(t) = z0 for all t ∈ [a, b] (and hence
γ′(t) = 0 for all t ∈ [a, b]).

Example 14.7. The most basic example of a closed curve is a circle: If z0 ∈ C
and r > 0 then the path z(t) = z0 + re2πit (for t ∈ [0, 1]) is the simple closed path
with positive orientation encircling z0 with radius r. The path z̃(t) = z0 + re−2πit

is the simple closed path encircling z0 with radius r and negative orientation.
Another useful path is a line segment: if a, b ∈ C then the path γ[a,b] : [0, 1]→ C

given by t 7→ a + t(b − a) = (1 − t)a + tb traverses the line segment from a to b.
We denote the corresponding oriented curve by [a, b] (which is consistent with the
notation for an interval in the real line). One of the simplest classes of closed paths
are triangles: given three points a, b, c, we define the triangle, or triangular path,
associated to them, to be the concatenation of the associated line segments, that is
Ta,b,c = γa,b ? γb,c ? γc,a.

14.2. Integration along a path. To define the integral of a complex-valued func-
tion along a path, we first need to be able to integrate functions F : [a, b] → C on
a closed interval [a, b] taking values in C. Last year in Analysis III the Riemann
integral was defined for a function on a closed interval [a, b] taking values in R,
but it is easy to extend this to functions taking values in C: Indeed we may write
F (t) = G(t) + iH(t) where G,H are functions on [a, b] taking real values. Then we
say that F is Riemann integrable if both G and H are, and we define:∫ b

a

F (t)dt =

∫ b

a

G(t)dt+ i

∫ b

a

H(t)dt

Note that if F is continuous, then its real and imaginary parts are also continuous,
and so in particular Riemann integrable27. The class of Riemann integrable (real
or complex valued) functions on a closed interval is however slightly larger than
the class of continuous functions, and this will be useful to us at certain points. In
particular, we have the following:

Lemma 14.8. Let [a, b] be a closed interval and S ⊂ [a, b] a finite set. If f is a
bounded continuous function (taking real or complex values) on [a, b]\S then it is
Riemann integrable on [a, b].

Proof. The case of complex-valued functions follows from the real case by taking
real and imaginary parts. For the case of a function f : [a, b]\S → R, let a = x0 <
x1 < x2 < . . . < xk = b be any partition of [a, b] which includes the elements of S.
Then on each open interval (xi, xi+1) the function f is bounded and continuous,
and hence integrable. We may therefore set∫ b

a

f(t)dt =

∫ x1

a

f(t)dt+

∫ x2

x1

f(t)dt+ . . .

∫ xk

xk−1

f(t)dt+

∫ b

xk

f(t)dt.

27It is clear this definition extends to give a notion of the integral of a function f : [a, b]→ Rn

– we say f is integrable if each of its components is, and then define the integral to be the vector
given by the integrals of each component function.
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The standard additivity properties of the integral then show that
∫ b
a
f(t)dt is inde-

pendent of any choices. �

Remark 14.9. Note that normally when one speaks of a function f being integrable
on an interval [a, b] one assumes that f is defined on all of [a, b]. However, if we
change the value of a Riemann integrable function f at a finite set of points, then
the resulting function is still Riemann integrable and its integral is the same. Thus
if one prefers the function f in the previous lemma to be defined on all of [a, b] one
can define f to take any values at all on the finite set S.

It is easy to check that the Riemann integral of complex-valued functions is
complex linear. We also note a version of the triangle inequality for complex-valued
functions:

Lemma 14.10. Suppose that F : [a, b]→ C is a complex-valued function. Then we
have ∣∣ ∫ b

a

F (t)dt
∣∣ ≤ ∫ b

a

|F (t)|dt.

Proof. First note that if F (t) = u(t) + iv(t) then |F (t)| =
√
u2 + v2 so that if F

is integrable |F (t)| is also28. We may write
∫ b
a
F (t)dt = reiθ, where r ∈ [0,∞)

and θ ∈ [0, 2π). Now taking the components of F in the direction of eiθ and
ei(θ+π/s) = ieiθ, we may write F (t) = u(t)eiθ + iv(t)eiθ. Then by our choice of θ

we have
∫ b
a
F (t)dt = eiθ

∫ b
a
u(t)dt, and so

∣∣ ∫ b

a

F (t)dt
∣∣ =

∣∣ ∫ b

a

u(t)dt
∣∣ ≤ ∫ b

a

|u(t)|dt ≤
∫ b

a

|F (t)|dt,

where in the first inequality we used the triangle inequality for the Riemann integral
of real-valued functions. �

We are now ready to define the integral of a function f : C→ C along a piecewise-
C1 curve.

Definition 14.11. If γ : [a, b]→ C is a piecewise-C1 path and f : C→ C, then we
define the integral of f along γ to be∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt.

In order for this integral to exist in the sense we have defined, we have seen that it
suffices for the functions f(γ(t)) and γ′(t) to be bounded and continuous at all but
finitely many t. Our definition of a piecewise C1-path ensures that γ′(t) is bounded
and continuous away from finitely many points (the boundedness follows from the
existence of the left and right hand limits at points of discontinuity of γ′(t)). For
most of our applications, the function f will be continuous on the whole image γ∗

of γ, but it will occasionally be useful to weaken this to allow f(γ(t)) finitely many
(bounded) discontinuities.

28The simplest way to see this is to use that fact that if φ is continuous and f is Riemann
integrable, then φ ◦ f is Riemann integrable.
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Lemma 14.12. If γ : [a, b] → C be a piecewise C1 path and γ̃ : [c, d] → C is an
equivalent path, then for any continuous function f : C→ C we have∫

γ

f(z)dz =

∫
γ̃

f(z)dz.

In particular, the integral only depends on the oriented curve [γ].

Proof. Since γ̃ is equivalent to γ there is a continuously differentiable function
s : [c, d]→ [a, b] with s(c) = a, s(d) = b and s′(t) > 0 for all t ∈ [c, d]. Suppose first
that γ is C1. Then by the chain rule we have∫

γ̃

f(z)dz =

∫ d

c

f(γ(s(t)))(γ ◦ s)′(t)dt

=

∫ d

c

f(γ(s(t))γ′(s(t))s′(t)dt

=

∫ b

a

f(γ(s))γ′(s)ds

=

∫
γ

f(z)dz.

where in the second last equality we used the change of variables formula. If
a = x0 < x1 < . . . < xn = b is a decomposition of [a, b] into subintervals such that
γ is C1 on [xi, xi+1] for 1 ≤ i ≤ n−1 then since s is a continuous increasing bijection,
we have a corresponding decomposition of [c, d] given by the points s−1(x0) < . . . <
s−1(xn), and we have∫

γ̃

f(z)dz =

∫ d

c

f(γ(s(t))γ′(s(t))s′(t)dt

=

n−1∑
i=0

∫ s−1(xi+1)

s−1(xi)

f(γ(s(t))γ′(s(t))s′(t)dt

=

n−1∑
i=0

∫ xi+1

xi

f(γ(x))γ′(x)dx

=

∫ b

a

f(γ(x))γ′(x)dx =

∫
γ

f(z)dz.

where the third equality follows from the case of C1 paths established above. �

Definition 14.13. If γ : [a, b] → C is a C1 path then we define the length of γ to
be

`(γ) =

∫ b

a

|γ′(t)|dt.

Using the chain rule as we did to show that the integrals of a function f : C → C
along equivalent paths are equal, one can check that the length of a parametrized
path is also constant on equivalence classes of paths, so in fact the above defines a
length function for oriented curves. The definition extends in the obvious way to
give a notion of length for piecewise C1-paths. More generally, one can define the
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integral with respect to arc-length of a function f : U → C such that γ∗ ⊆ U to be∫
γ

f(z)|dz| =
∫ b

a

f(γ(t))|γ′(t)|dt.

This integral is invariant with respect to C1 reparametrizations s : [c, d] → [a, b] if
we require s′(t) 6= 0 for all t ∈ [c, d] (the condition s′(t) > 0 is not necessary because
of this integral takes the modulus of γ′(t)). In particular `(γ) = `(γ−).

The integration of functions along piecewise smooth paths has many of the prop-
erties that the integral of real-valued functions along an interval possess. We record
some of the most standard of these:

Proposition 14.14. Let f, g : U → C be continuous functions on an open subset
U ⊆ C and γ, η : [a, b]→ C be piecewise-C1 paths whose images lie in U . Then we
have the following:

(1) (Linearity): For α, β ∈ C,∫
γ

(αf(z) + βg(z))dz = α

∫
γ

f(z)dz + β

∫
γ

g(z)dz.

(2) If γ− denotes the opposite path to γ then∫
γ

f(z)dz = −
∫
γ−
f(z)dz.

(3) (Additivity): If γ ? η is the concatenation of the paths γ, η in U , we have∫
γ?η

f(z)dz =

∫
γ

f(z)dz +

∫
η

f(z)dz.

(4) (Estimation Lemma.) We have∣∣ ∫
γ

f(z)dz
∣∣ ≤ sup

z∈γ∗
|f(z)|.`(γ).

Proof. Since f, g are continous, and γ, η are piecewise C1, all the integrals in the
statement are well-defined: the functions f(γ(t))γ′(t), f(η(t))η′(t), g(γ(t))γ′(t) and
g(η(t))η′(t) are all Riemann integrable. It is easy to see that one can reduce these
claims to the case where γ is smooth. The first claim is immediate from the linearity
of the Riemann integral, while the second claim follows from the definitions and
the fact that (γ−)′(t) = −γ′(a + b − t). The third follows immediately for the
corresponding additivity property of Riemann integrable functions.

For the fourth part, first note that γ([a, b]) is compact in C since it is the image
of the compact set [a, b] under a continuous map. It follows that the function |f | is
bounded on this set so that supz∈γ([a,b]) |f(z)| exists. Thus we have∣∣ ∫

γ

f(z)dz
∣∣ =

∣∣ ∫ b

a

f(γ(t))γ′(t)dt
∣∣

≤
∫ b

a

|f(γ(t))||γ′(t)|dt

≤ sup
z∈γ∗
|f(z)|

∫ b

a

|γ′(t)|dt

= sup
z∈γ∗
|f(z)|.`(γ).
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where for the first inequality we use the triangle inequality for complex-valued
functions as in Lemma 14.10 and the positivity of the Riemann integral for the
second inequality. �

Remark 14.15. We give part (4) of the above proposition a name (the “estima-
tion lemma”) because it will be very useful later in the course. We will give one
important application of it now:

Proposition 14.16. Let fn : U → C be a sequence of continuous functions on an
open subset U of the complex plane. Suppose that γ : [a, b] → C is a path whose
image is contained in U . If (fn) converges uniformly to a function f on the image
of γ then ∫

γ

fn(z)dz →
∫
γ

f(z)dz.

Proof. We have∣∣∣∣∫
γ

f(z)dz −
∫
γ

fn(z)dz

∣∣∣∣ =

∣∣∣∣∫
γ

(f(z)− fn(z))dz

∣∣∣∣
≤ sup
z∈γ∗
{|f(z)− fn(z)|}.`(γ),

by the estimation lemma. Since we are assuming that fn tends to f uniformly on
γ∗ we have sup{|f(z)−fn(z)| : z ∈ γ∗} → 0 as n→∞ which implies the result. �

Definition 14.17. Let U ⊆ C be an open set and let f : U → C be a continuous
function. If there exists a differentiable function F : U → C with F ′(z) = f(z) then
we say F is a primitive for f on U .

The fundamental theorem of calculus has the following important consequence29:

Theorem 14.18. (Fundamental theorem of Calculus): Let U ⊆ C be a open and
let f : U → C be a continuous function. If F : U → C is a primitive for f and
γ : [a, b]→ U is a piecewise C1 path in U then we have∫

γ

f(z)dz = F (γ(b))− F (γ(a)).

In particular the integral of such a function f around any closed path is zero.

Proof. First suppose that γ is C1. Then we have∫
γ

f(z)dz =

∫
γ

F ′(z)dz =

∫ b

a

F ′(γ(t))γ′(t)dt

=

∫ b

a

d

dt
(F ◦ γ)(t)dt

= F (γ(b))− F (γ(a)),

where in second line we used a version of the chain rule30 and in the last line we
used the Fundamental theorem of Calculus from Prelims analysis on the real and
imaginary parts of F ◦ γ.

29You should compare this to the existence of a potential in vector calculus.
30See the appendix for a discussion of this – we need a version of the chain rule for a composition

of real-differentiable functions f : R2 → R2 and g : R→ R2.
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If γ is only31 piecewise C1, then take a partition a = a0 < a1 < . . . < ak = b
such that γ is C1 on [ai, ai+1] for each i ∈ {0, 1, . . . , k − 1}. Then we obtain a
telescoping sum: ∫

γ

f(z) =

∫ b

a

f(γ(t))γ′(t)dt

=

k−1∑
i=0

∫ ai+1

ai

f(γ(t))γ′(t)dt

=

k−1∑
i=0

(F (γ(ai+1))− F (γ(ai)))

= F (γ(b))− F (γ(a)),

Finally, since γ is closed precisely when γ(a) = γ(b) it follows immediately that
the integral of f along a closed path is zero. �

Remark 14.19. If f(z) has finitely many point of discontinuity S ⊂ U but is bounded
near them, and γ(t) ∈ S for only finitely many t, then provided F is continuous
and F ′ = f on U\S, the same proof shows that the fundamental theorem still holds
– one just needs to take a partition of [a, b] to take account of those singularities
along with the singularities of γ′(t).

Theorem 14.18 already has an important consequence:

Corollary 14.20. Let U be a domain and let f : U → C be a function with f ′(z) = 0
for all z ∈ U . Then f is constant.

Proof. Pick z0 ∈ U . Since U is path-connected, if w ∈ U , we may find32 a piecewise
C1-path γ : [0, 1]→ U such that γ(a) = z0 and γ(b) = w. Then by Theorem 14.18
we see that

f(w)− f(z0) =

∫
γ

f ′(z)dz = 0,

so that f is constant as required. �

The following theorem is a kind of converse to the fundamental theorem:

Theorem 14.21. If U is a domain (i.e. it is open and path connected) and f : U →
C is a continuous function such that for any closed path in U we have

∫
γ
f(z)dz = 0,

then f has a primitive.

Proof. Fix z0 in U , and for any z ∈ U set

F (z) =

∫
γ

f(z)dz.

where γ : [a, b]→ U with γ(a) = z0 and γ(b) = z.
We claim that F (z) is independent of the choice of γ. Indeed if γ1, γ2 are two

such paths, let γ = γ1 ? γ
−
2 be the path obtained by concatenating γ1 and the

31The reason we must be careful about this case is that the Fundamental Theorem of Calculus

only holds when the integrand is continuous.
32Check that you see that if U is an open subset of C which is path-connected then any two

points can be joined by a piecewise C1-path.
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opposite γ−2 of γ2 (that is, γ traverses the path γ1 and then goes backward along
γ2). Then γ is a closed path and so, using Proposition 14.14 we have

0 =

∫
γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ−2

f(z)dz,

hence since
∫
γ−2
f(z)dz = −

∫
γ2
f(z)dz we see that

∫
γ1
f(z)dz =

∫
γ2
f(z)dz.

Next we claim that F is differentiable with F ′(z) = f(z). To see this, fix w ∈ U
and ε > 0 such that B(w, ε) ⊆ U and choose a path γ : [a, b] → U from z0 to
w. If z1 ∈ B(w, ε) ⊆ U , then the concatenation of γ with the straight-line path
s : [0, 1]→ U given by s(t) = w + t(z −w)from w to z is a path γ1 from z0 to z. It
follows that

F (z1)− F (w) =

∫
γ1

f(z)dz −
∫
γ

f(z)dz

= (

∫
γ

f(z)dz +

∫
s

f(z)dz)−
∫
γ

f(z)dz

=

∫
s

f(z)dz.

But then we have for z1 6= w∣∣∣∣F (z1)− F (w)

z1 − w
− f(w)

∣∣∣∣ =

∣∣∣∣ 1

z1 − w

(∫ 1

0

f(w + t(z1 − w)(z1 − w)dt

)
− f(w)

∣∣∣∣
=

∣∣∣∣∫ 1

0

(f(w + t(z1 − w))− f(w))dt

∣∣∣∣
≤ sup
t∈[0,1]

|f(w + t(z1 − w))− f(w)|

→ 0 as z1 → w

as f is continuous at w. Thus F is differentiable at w with derivative F ′(w) = f(w)
as claimed. �

15. Cauchy’s theorem

The key insight into the study of holomorphic functions is Cauchy’s theorem,
which (somewhat informally) states that if f : U → C is holomorphic and γ is a
path in U whose interior lies entirely in U then

∫
γ
f(z)dz = 0. It will follow from

this and Theorem 14.21 that, at least locally, every holomorphic function has a
primitive. The strategy to prove Cauchy’s theorem goes as follows: first show it for
the simplest closed contours – triangles. Then use this to deduce the existence of a
primitive (at least for certain kinds of sufficiently nice open sets U which are called
“star-like”) and then use Theorem 14.18 to deduce the result for arbitrary paths
in such open subsets. We will discuss more general versions of the theorem later,
after we have applied Cauchy’s theorem for star-like domains to obtain important
theorems on the nature of holomorphic functions. First we recall the definition of
a triangular path:

Definition 15.1. A triangle or triangular path T is a path of the form γ1 ? γ2 ? γ3

where γ1(t) = a + t(b − a), γ2(t) = b + t(c − b) and γ3(t) = c + t(a − c) where
t ∈ [0, 1] and a, b, c ∈ C. (Note that if {a, b, c} are collinear, then T is a degenerate
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Figure 1. Subdivision of a triangle

triangle.) That is, T traverses the boundary of the triangle with vertices a, b, c ∈ C.
The solid triangle T bounded by T is the region

T = {t1a+ t2b+ t3c : ti ∈ [0, 1],

3∑
i=1

ti = 1},

with the points in the interior of T corresponding to the points with ti > 0 for each
i ∈ {1, 2, 3}. We will denote by [a, b] the line segment {a+ t(b− a) : t ∈ [0, 1]}, the
side of T joining vertex a to vertex b. Whenever it is not evident what the vertices
of the triangle T are, we will write Ta,b,c.

Theorem 15.2. (Cauchy’s theorem for a triangle): Suppose that U ⊆ C is an open
subset and let T ⊆ U be a triangle whose interior is entirely contained in U . Then
if f : U → C is holomorphic we have∫

T

f(z)dz = 0

Proof. The proof proceeds using a version of the “divide and conquer” strategy one
uses to prove the Bolzano-Weierstrass theorem. Suppose for the sake of contra-
diction that

∫
T
f(z)dz 6= 0, and let I = |

∫
T
f(z)dz| > 0. We build a sequence of

smaller and smaller triangles Tn around which the integral of f is not too small, as
follows: Let T 0 = T , and suppose that we have constructed T i for 0 ≤ i < k. Then
take the triangle T k−1 and join the midpoints of the edges to form four smaller
triangles, which we will denote Si (1 ≤ i ≤ 4).

Then we have
∫
Tk−1 f(z)dz =

∑4
i=1

∫
Si
f(z)dz, since the integrals around the

interior edges cancel (see Figure 1). In particular, we must have

Ik = |
∫
Tk−1

f(z)dz| ≤
4∑
i=1

|
∫
Si

f(z)dz|,

so that for some i we must have |
∫
Si
f(z)dz| ≥ Ik−1/4. Set T k to be this triangle

Si. Then by induction we see that `(T k) = 2−k`(T ) while Ik ≥ 4−kI.
Now let T be the solid triangle with boundary T and similarly let T k be the

solid triangle with boundary T k. Then we see that diam(T k) = 2−kdiam(T )→ 0,
and the sets T k are clearly nested. It follows from Lemma 8.6 that there is a unique
point z0 which lies in every T k. Now by assumption f is holomorphic at z0, so we
have

f(z) = f(z0) + f ′(z0)(z − z0) + (z − z0)ψ(z),
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where ψ(z)→ 0 = ψ(z0) as z → z0. Note that ψ is continuous and hence integrable
on all of U . Now since the linear function z 7→ f ′(z0)z+f(z0) clearly has a primitive
it follows from Theorem 14.18∫

Tk
f(z)dz =

∫
Tk

(z − z0)ψ(z)dz

Now since z0 lies in T k and z is on the boundary T k of T k, we see that |z − z0| ≤
diam(T k) = 2−kdiam(T ). Thus if we set ηk = supz∈Tk |ψ(z)|, it follows by the
estimation lemma that

Ik =
∣∣ ∫
Tk

(z − z0)ψ(z)dz
∣∣ ≤ ηk.diam(T k)`(T k)

= 4−kηk.diam(T ).`(T ).

But since ψ(z)→ 0 as z → z0, it follows ηk → 0 as k →∞, and hence 4kIk → 0
as k → ∞. On the other hand, by construction we have 4kIk ≥ I > 0, thus we
have a contradiction as required. �

We will later use the following slight extension of this result. If U is an open set
and S ⊂ U is a finite set, then if f : U\S → C is a continuous function we say that
f is bounded near s ∈ S if there is a δ > 0 such that f is bounded on B(s, δ)\{s}.

Corollary 15.3. Suppose that U is open in C and S ⊂ U is a finite set. If
f : U\S → C is holomorphic on U\S and is bounded near each s ∈ S. Then if T is
any triangle whose interior is entirely contained in U we have33

∫
T
f(z)dz = 0.

Proof. Since f is continuous on U\S and bounded near S, it is bounded on T , so
we may take M > 0 such that |f(z)| ≤ M for all z ∈ T . If the vertices of T are
collinear, then the integral

∫
T
f(z)dz = 0 for any f : U → C which is continuous on

U\S and bounded near S as one sees directly from the definition. Otherwise we
use induction on |S|, the case |S| = 0 being established in the previous theorem.

If |S| > 0 pick p ∈ S. Let the vertices of T be a, b, c, and first suppose that
p ∈ {a, b, c}, say p = a. Then given ε > 0, choose x ∈ [a, b] and y ∈ [a, c] such that
the triangle Ta,x,y with vertices {a, x, y} has `(Ta,x,y) < ε/M . Then we have∣∣∣∣∫

T

f(z)dz

∣∣∣∣ =

∣∣∣∣∣
∫
Ta,x,y

f(z)dz +

∫
Tx,b,y

f(z)dz +

∫
Ty,b,a

f(z)dz

∣∣∣∣∣
=

∣∣∣∣∣
∫
Ta,x,y

f(z)dz

∣∣∣∣∣ ≤ `(Ta,x,y).M < ε.

Where the second and third term on the right-hand side of the first line are zero
by induction (since they do not contain a by the assumption that a, b, c are not
collinear). Since ε > 0 was arbitrary, we see that

∫
T
f(z)dz = 0 as required. Now

if p is arbitrary, we may apply the above to the triangles Ta,b,p, Tb,p,c and Tc,p,a to
conclude that∫

T

f(z)dz =

∫
Ta,b,p

f(z)dz +

∫
Tb,p,c

f(z)dz +

∫
Tc,p,a

f(z)dz = 0

33Note that the integral along the triangle is still defined even T contains points in S because

f is bounded near the points of S: a continuous (real or complex valued) bounded function g still
has a well-defined integral over an interval [a, b] even if it is not defined at a finite subset of [a, b].

See Lemma 14.8 for more details.
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as required. �

In fact we will see later that this generalization is spurious, in that any function
satisfying the hypotheses of the Corollary is in fact holomorphic on all of U , but
it will be a key step in our proof of a crucial theorem, the Cauchy integral for-
mula, which will allow us to show that a holomorphic function is in fact infinitely
differentiable.

Definition 15.4. Let X be a subset in C. We say that X is convex if for each
z, w ∈ U the line segment between z and w is contained in X. We say that X is
star-like if there is a point z0 ∈ X such that for every w ∈ X the line segment
[z0, w] joining z0 and w lies in X. We will say that X is star-like with respect to
z0 in this case. Thus a convex subset is thus starlike with respect to every point it
contains.

Example 15.5. A disk (open or closed) is convex, as is a solid triangle or rectangle.
On the other hand a cross, such as {0} × [−1, 1] ∪ [−1, 1] × {0} is star-like with
respect to the origin, but is not convex.

Theorem 15.6. (Cauchy’s theorem for a star-like domain): Let U be a star-like
domain. The if f : U → C is holomorphic and γ : [a, b] → U is a closed path in U
we have ∫

γ

f(z)dz = 0.

Proof. The proof proceeds similarly to the proof of Theorem 14.21: by Theorem
14.18 it suffices to show that f has a primitive in U . To show this, let z0 ∈ U
be a point for which the line segment from z0 to every z ∈ U lies in U . Let
γz = z0 + t(z − z0) be a parametrization of this curve, and define

F (z) =

∫
γz

f(ζ)dζ.

We claim that F is a primitive for f on U . Indeed pick ε > 0 such that B(z, ε) ⊆ U .
Then if w ∈ B(z, ε) note that the triangle T with vertices z0, z, w lies entirely in U
by the assumption that U is star-like with respect to z0. It follows from Theorem
15.2 that

∫
T
f(ζ)dζ = 0, and hence if η(t) = w + t(z − w) is the straight-line path

going from w to z (so that T is the concatenation of γw, η and γ−z ) we have∣∣F (z)− F (w)

z − w
− f(z)

∣∣ =
∣∣ ∫
η

f(ζ)

z − w
dζ − f(z)

∣∣
=
∣∣ ∫ 1

0

f(w + t(z − w))dt− f(z)
∣∣

=
∣∣ ∫ 1

0

(f(w + t(z − w))− f(z)dt
∣∣

≤ sup
t∈[0,1]

|f(w + t(z − w))− f(z)|,

which, since f is continuous at w, tends to zero as w → z so that F ′(z) = f(z) as
required.

�

Just as we saw for Cauchy’s theorem for a triangle, this result can be slightly
strengthened as follows:
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Corollary 15.7. If U is a star-like domain and S a finite subset of U . If f : U\S →
C is a holomorphic function which is bounded near each s ∈ S, then

∫
γ
f(z)dz = 0

for every closed path γ : [a, b] → U for which γ(t) ∈ S for only finitely many t ∈
[a, b].

Proof. The condition on γ and the boundedness of f near S ensures that
∫
γ
f(z)dz

exists. The proof then proceeds exactly as for the previous theorem, using Corollary
15.3 instead of Theorem 15.2. Note that the proof shows only that F ′ = f where f
is continuous, so potentially not at the points of S. However by Remark 14.19 we
just need to check that F is still continuous at s ∈ S. But if s ∈ S and we may find
δ,M ∈ R>0 such that B(s, δ) ⊆ U and |f(z)| ≤ M for all z ∈ B(s, δ)\{s}. Then
for z ∈ B(s, δ), if γz denotes the straight-line path from s to z we have

|F (z)− F (s)| = |
∫
γz

f(z)dz| ≤M.`(γz) = M.|z − s|

thus F is continuous at s. Since the integral of a function is unaffected if we
change the value of the function at finitely many points (and so in particular F ′ is
integrable), we still have∫

γ

f(z)dz =

∫
γ

F ′(z)dz = F (γ(b))− F (γ(a)),

where the second equality holds via a telescoping argument similar to the argument
in the proof of Theorem 14.18 for piecewise C1-paths. Thus the integral of f along
any closed path is zero as required. �

Note that our proof of Cauchy’s theorem for a star-like domain D proceeded by
showing that any holomorphic function on D has a primitive, and hence by the
fundamental theorem of calculus its integral around a closed path is zero. This
motivates the following definition:

Definition 15.8. We say that a domain D ⊆ C is primitive34 if any holomorphic
function f : D → C has a primitive in D.

Thus, for example, our proof of Theorem 15.6 shows that all star-like domains are
primitive. The following Lemma shows however that we can build many primitive
domains which are not star-like.

Lemma 15.9. Suppose that D1 and D2 are primitive domains and D1 ∩ D2 is
connected. Then D1 ∪D2 is primitive.

Proof. Let f : D1∪D2 → C be a holomorphic function. Then f|D1
is a holomorphic

function on D1, and thus it has a primitive F1 : D1 → C. Similarly f|D2
has a

primitive, F2 say. But then F1 − F2 has zero derivative on D1 ∩ D2, and since
by assumption D1 ∩D2 is connected (and thus path-connected) it follows F1 − F2

is constant, c say, on D1 ∩ D2. But then if F : D1 ∪ D2 → C is a defined to be
F1 on D1 and F2 + c on D2 it follows that F is a primitive for f on D1 ∪ D2 as
required. �

34This is not standard terminology. The reason for this will become clear later.
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15.1. Cauchy’s Integral Formula. We are now almost ready to prove one of the
most important consequences of Cauchy’s theorem – the integral formula. It is
based on the following elementary calculation:

Lemma 15.10. Let a ∈ C and let γ(t) = a + re2πit be a parametrization of the
circle of radius r centred at a. Then if w ∈ B(a, r) we have∫

γ

1

z − w
dz = 2πi.

Proof. Suppose that |w − a| = ρ < r. We have

1

z − w
=

1

(z − a)− (w − a)
=

1

z − a
∑
n≥0

(
w − a
z − a

)n,

where the sum converges uniformly as a function of z for z in the image of γ, since
the radius of convergence of

∑
k≥0 z

k is 1. Thus by Lemma 14.16 we see that∫
γ

1

z − w
dz =

∑
k≥0

(w − a)k
∫
γ

1

(z − a)k+1
dz

=
∑
k≥0

(w − a)k
∫ 1

0

r−k−1e−2(k+1)πit.(2πire2πit)dt

=
∑
k≥0

2πi(w − a)k
∫ 1

0

r−ke−2kπitdt

= 2πi+
∑
k≥1

(w − a)kr−k
(1− e−2kπi

2kπit

)
= 2πi

�

Theorem 15.11. (Cauchy’s Integral Formula.) Suppose that f : U → C is a holo-
morphic function on an open set U which contains the disc B̄(a, r). Then for all
w ∈ B(a, r) we have

f(w) =
1

2πi

∫
γ

f(z)

z − w
dz,

where γ is the path t 7→ a+ re2πit.

Proof. Fix w ∈ B(a, r) and let |a − w| = ρ < r. Consider the function g(z) =
f(z)−f(w)

z−w on U\{w}. Then since f is differentiable at w ∈ U if we extend g to all of

U by defining g(w) = f ′(w) it follows that g is continuous on U and, by standard
algebraic properties, it is holomorphic on U\{w}.

Since B̄(a, r) is compact in the open set U , we may find an R > r such that
B(a,R) ⊆ U . In particular, Corollary 15.7 applies to the function g on the convex
set B(a,R), and so

∫
γ
g(z)dz = 0. But then we have

0 =

∫
γ

f(z)− f(w)

z − w
dz =

∫
γ

f(z)dz

z − w
− f(w)

∫
γ

dz

z − w
.



METRIC SPACES AND COMPLEX ANALYSIS. 63

(note that since w ∈ B(a, r) it does not lie on the image of γ, so that the integrals
above all exist). But then by Lemma 15.10 we see that∫

γ

f(z)

z − w
dz = f(w)

∫
γ

1

z − w
dz = 2πif(w),

and the result follows. �

Remark 15.12. The same result holds for any oriented curve γ for which we can
make sense of the notion of the “interior” of the curve γ. We will develop this
generalization later using the notion of the winding number of a path around a
point w /∈ γ∗.

Remark 15.13. Note that the same integral formula also holds if f is only defined
on U\S where S is a finite set, provided that f is bounded near the points of S.
This follows by applying Corollary 15.7 in place of Theorem 15.6.

Remark 15.14. This formula has many remarkable consequences: note first of all
that it implies that if f is holomorphic on an open set containing the disc B̄(a, r)
then the values of f inside the disc are completely determined by the values of f
on the boundary circle. Moreover, the formula can be interpreted as saying the
value of f(w) for w inside the circle is obtained as the “convolution” of f and the
function 1/(z−w) on the boundary circle. Since the function 1/(z−w) is infinitely
differentiable one can use this to show that f itself is infinitely differentiable as we
will shortly show. If you take the Integral Transforms, you will see convolution
play a crucial role in the theory of transforms. In particular, the convolution of two
functions often inherits the “good” properties of either.

15.2. Applications of the Integral Formula. One immediate application of the
Integral formula is known as Liouville’s theorem, which will give an easy proof of
the Fundamental Theorem of Algebra35. We say that a function f : C→ C is entire
if it is complex differentiable on the whole complex plane.

Theorem 15.15. Let f : C → C be an entire function. If f is bounded then it is
constant.

Proof. Suppose that |f(z)| ≤ M for all z ∈ C. Let γR(t) = Re2πit be the circular
path centred at the origin with radius R. The for R > |w| the integral formula
shows

|f(w)− f(0)| =
∣∣ ∫
γR

f(z)
( 1

z − w
− 1

z

)
dz
∣∣

=
∣∣ ∫
γR

w.f(z)

z(z − w)
dz
∣∣

≤ 2πR sup
z:|z|=R

∣∣ w.f(z)

z(z − w)
|

≤ 2πR.
M |w|

R.(R− |w|)
=

2πM |w|
R− |w|

,

Thus letting R→∞ we see that |f(w)−f(0)| = 0, so that f is constant an required.
�

35Which, when it comes down to it, isn’t really a theorem in algebra. The most “algebraic”
proof of that I know uses Galois theory, which you can learn about in Part B.
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Theorem 15.16. Suppose that p(z) =
∑n
k=0 akz

k is a non-constant polynomial
where ak ∈ C and an 6= 0. Then there is a z0 ∈ C for which p(z0) = 0.

Proof. By rescaling p we may assume that an = 1. If p(z) 6= 0 for all z ∈ C it
follows that f(z) = 1/p(z) is an entire function (since p is clearly entire). We claim
that f is bounded. Indeed since it is continuous it is bounded on any disc B̄(0, R),
so it suffices to show that |f(z)| → 0 as z → ∞, that is, to show that |p(z)| → ∞
as z →∞. But we have

|p(z)| = |zn +

n−1∑
k=0

akz
k| = |zn|

{
|1 +

n−1∑
k=0

ak
zn − k

|
}
≥ |zn|.(1−

n−1∑
k=0

|ak|
|z|n−k

).

Since 1
|z|m → 0 as |z| → ∞ for any m ≥ 1 it follows that for sufficiently large

|z|, say |z| ≥ R, we will have 1 −
∑n−1
k=0

|ak|
|z|n−k ≥ 1/2. Thus for |z| ≥ R we have

|p(z)| ≥ 1
2 |z|

n. Since |z|n clearly tends to infinity as |z| does it follows |p(z)| → ∞
as required. �

Remark 15.17. The crucial point of the above proof is that one term of the polyno-
mial – the leading term in this case– dominates the behaviour of the polynomial for
large values of z. All proofs of the fundamental theorem hinge on essentially this
point. Note that p(z0) = 0 if and only if p(z) = (z − z0)q(z) for a polynomial q(z),
thus by induction on degree we see that the theorem implies that a polynomial over
C factors into a product of degree one polynomials.

Lemma 15.18. Suppose that γ : [0, 1] → C is a circular path, γ(t) = a + re2πit

whose image bounds the disk B(a, r). Then if g : ∂B(a, r) → C is any continuous
function, the function f : B(a, r)→ C defined by

f(z) =

∫
γ

g(ζ)

ζ − z
dζ

is given by a power series
∑
n≥0 cn(z − a)n where we have

cn =
1

2πi

∫
γ

g(ζ)

(ζ − a)n+1
dζ

Proof. Translating if necessary, we may assume that a = 0. Now if z ∈ B(0, r) we

have |z| < |ζ| for all ζ in the image of γ, hence we have 1
ζ−z =

∑∞
k=0

zk

ζk+1 , where

the series converges absolutely for |z| < |ζ|, and uniformly if we bound |z| < K|ζ|
for some K < 1. Thus since the image of γ is compact and so |g(z)| is bounded on

it, we have g(ζ)/(ζ − z) is the uniform limit
∑
k≥0

g(z)zk

ζk+1 for all z in the image of

γ. It follows from Lemma 14.16 that

2πif(z) =

∫
γ

g(ζ)

ζ − z
dζ =

∫
γ

∑
k≥0

g(ζ)zk

ζk+1
dζ =

∑
k≥0

( ∫
γ

g(ζ)

ζk+1
dz
)
zk,

hence the claim follows.
�

This Lemma combined with the Integral Formula for holomorphic functions on
an open set U has the very important consequence that any holomorphic function
is both infinitely differentiable and equal to its Taylor series every point a ∈ U .
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Theorem 15.19. (Taylor expansions): Suppose that U is an open subset of C and
f : U → C is holomorphic on U . Then if B̄(a, r) ⊂ U , the function f is given in
B(a, r)by a power series

∑
n≥0 cn(z − a)n about a where

cn =
f (n)(a)

n!
=

1

2πi

∫
γ

f(z)

(z − a)n+1
dz

where γ(t) = a+re2πit. In particular, any holomorphic function is in fact infinitely
complex differentiable.x

Proof. The fact that f is equal to a power series on B(a, r) and the integral expres-
sion for the coefficients follows immediately from Lemma 15.18 since by Cauchy’s
integral formula we have for any z ∈ B(a, r)

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ.

where γ(t) = a+ re2πit. (Since it is holomorphic on U it is certainly continuous on
the image of γ.) The formulas for the coefficients of the power series in terms of
the derivatives f (n)(a) follow from standard properties of power series. �

Theorem 15.20. (Cauchy’s Integral Formulae for a circle): If f : U → C is a
holomorphic function on an open subset U of C and B̄(a, r) ⊆ U then for all
w ∈ B(a, r) we have

(15.1) f (n)(w) =
n!

2πi

∫
γ

f(z)

(z − w)n+1
dz.

where γ(t) = a+ reit is a parametrization of the boundary of B(a, r).

Proof. First note that if w ∈ B(a, r) then if δ = r − |w − a|, we have B̄(w, δ/2) ⊆
B(a, r) and since f is holomorphic inB(a, r), applying Taylor’s theorem to B̄(w, δ/2)
we see that f(z) =

∑∞
k=0 ck(z − w)k, where ck = f (k)(w)/k! in B(w, δ/2). Thus

if we set Pn(z) to be the polynomial
∑n
k=0 ck(z − w)k, it follows that g(z) =

(f(z) − Pn(z))/(z − w)n+1 is holomorphic in U , since it is evidently so for z 6= w
and it is equal to the power series

∑∞
k=0 ck+n+1(z − w)k in B(w, δ/2). Hence by

Cauchy’s theorem for the convex domain B(a, δ) we have
∫
γ
g(z)dz = 0. However

Pn(z)/(z − w)n+1 =
∑n+1
k=1 cn+1−k(z − w)−k, and for k ≥ 2 each of the functions

(z − w)−k has an antiderivative on C\{w} so that by the fundamental theorem of
calculus their integral over γ is zero. It follows that

n!

2πi

∫
γ

f(z)

(z − w)n
dz =

n!

2πi

∫
γ

P (z)

(z − w)n
dz =

n!

2πi

∫
γ

cn
z − w

dz = f (n)(w)

where in the last equality we used Lemma 15.10. �

Definition 15.21. A function which is locally given by a power series is said to be
analytic. We have thus shown that any holomorphic function is actually analytic,
and from now on we may use the terms interchangeably (as you may notice is
common practice in many textbooks).

Corollary 15.22. (Riemann’s removable singularity theorem): Suppose that U is
an open subset of C and z0 ∈ U . If f : U\{z0} → C is a holomorphic and bounded
near z0, then f extends to a holomorphic function on all of U .
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Proof. Fix r > 0 such that B̄(z0, r) ⊆ U . Then by the extension of Cauchy’s
integral formula given in Remark 15.13 we have for all z ∈ B(z0, r)\{z0}

f(z) =

∫
γ

f(ζ)

ζ − z
dζ,

where γ(t) = z0 + re2πit. Since by Lemma 15.18 the right-hand side defines a
holomorphic function on all of B(z0, r) it defines the required extension. �

We end this section with a kind of converse to Cauchy’s theorem:

Theorem 15.23. (Morera’s theorem) Suppose that f : U → C is a continuous
function and on an open subset U ⊆ C. If for any closed path γ : [a, b] → U we
have

∫
γ
f(z)dz = 0, then f is holomorphic.

Proof. By Theorem 14.21 we know that f has a primitive F : U → C. But then F
is holomorphic on U and so infinitely differentiable on U , thus in particular f = F ′

is also holomorphic. �

Remark 15.24. One can prove variants of the above theorem: If U is a star-like
domain for example, then our proof of Cauchy’s theorem for such domains shows
that f : U → C has a primitive (and hence will be differentiable itself) provided∫
T
f(z)dz = 0 for every triangle in U . In fact the assumption that

∫
T
f(z)dz = 0 for

all triangles whose interior lies in U suffices to imply f is holomorphic for any open
subset U : To show f is holomorphic on U , it suffices to show that f is holomorphic
on B(a, r) for each open disk B(a, r) ⊂ U . But this follows from the above as
disks are star-like (in fact convex). It follows that we can characterize the fact that
f : U → C is holomorphic on U by an integral condition: f : U → C is holomorphic
if and only if for all triangles T which bound a solid triangle T with T ⊂ U , the
integral

∫
T
f(z)dz = 0.

This characterization of the property of being holomorphic has some important
consequences:

Proposition 15.25. Suppose that U is a domain and the sequence of functions
fn : U → C converges to f : U → C uniformly on every compact subset K ⊆ U .
Then f is holomorphic.

Proof. Since the property of being holomorphic is local, it suffices to show for each
w ∈ U that there is a ball B(w, r) ⊆ U within which f is holomorphic. Since U
is open, for any such w we may certainly find r > 0 such that B(w, r) ⊆ U . Then
as B(w, r) is convex, Cauchy’s theorem for a star-like domain shows that for every
closed path γ : [a, b]→ B(w, r) whose image lies in B(w, r) we have

∫
γ
fn(z)dz = 0

for all n ∈ N.
But γ∗ = γ([a, b]) is a compact subset of U , hence fn → f uniformly on γ∗. It

follows that

0 =

∫
γ

fn(z)dz →
∫
γ

f(z)dz,

so that the integral of f around any closed path in B(w, r) is zero. But then
Theorem 14.21 shows that f has a primitive F on B(w, r). But we have seen that
any holomorphic function is in fact infinitely differentiable, so it follows that F ,
and hence f is infinitely differentiable on B(w, r) as required.

�
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Remark 15.26. The condition that fn → f uniformly on any compact subset of
U may seem strange at first sight, but it in fact the condition that is most often
satisfied (and also the one the proof requires). A good example is to consider
fn(z) =

∑n
k=0 z

k. Then fn → f where f(z) = 1/(1 − z) on B(0, 1), but the
convergence is only uniform on the closed balls B̄(0, r) for r < 1, and not36 on the
whole of B(0, 1). You can check this is equivalent to the condition that fn tends to
f uniformly on any compact subset of B(0, 1).

Often functions on the complex plane are defined in terms of integrals. It is thus
useful to have a criterion by which one can check if such a function is holomorphic.
The following theorem gives such a criterion.

Theorem 15.27. Let U be an open subset of C and suppose that F : U × [a, b] is
a function satisfying

(1) The function z 7→ F (z, s) is holomorphic in z for each s ∈ [a, b].
(2) F is continuous on U × [a, b]

Then the function f : U → C defined by

f(z) =

∫ b

a

F (z, s)ds

is holomorphic.

Proof. Changing variables we may assume that [a, b] = [0, 1] (explicitly, one replaces
s by (s − a)/(b − a)). By Theorem 15.25 it is enough to show that we may find
a sequence of holomorphic functions fn(z) which converge of f(z) uniformly on
compact subsets of U . To find such a sequence, recall from Prelims Analysis that
the Riemann integral of a continuous function is equal to the limit of its Riemann
sums as the mesh of the partition used for the sum tends to zero. Using the partition
xi = i/n for 0 ≤ i ≤ n evaluating at the right-most end-point of each interval, we
see that

fn(z) =
1

n

n∑
i=1

F (z, i/n),

is a Riemann sum for the integral
∫ 1

0
F (z, s)ds, hence as n→∞ we have fn(z)→

f(z) for each z ∈ U , i.e. the sequence (fn) converges pointwise to f on all of U . To
complete the proof of the theorem it thus suffices to check that fn → f as n→∞
uniformly on compact subsets of U . But if K ⊆ U is compact, then since F is
clearly continuous on the compact set K × [0, 1], it is uniformly continuous there,
hence, given any ε > 0, there is a δ > 0 such that |F (z, s) − F (z, t)| < ε for all
z ∈ B̄(a, ρ) and s, t ∈ [0, 1] with |s − t| < δ. But then if n > δ−1 we have for all

36If you have not already done it, then it is a good exercise to check that fn does not converge
uniformly to f on B(0, 1).
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z ∈ K

|f(z)− fn(z)| =
∣∣ ∫ 1

0

F (z, s)dz − 1

n

n∑
i=1

F (z, i/n)
∣∣

=

∣∣∣∣∣
n∑
i=1

∫ i/n

(i−1)/n

(
F (z, s)− F (z, i/n)

)
ds

∣∣∣∣∣
≤

n∑
i=1

∫ i/n

(i−1)/n

|F (z, s)− F (z, i/n)|ds

<

n∑
i=1

ε/n = ε.

Thus fn(z) tends to f(z) uniformly on K as required. �

Example 15.28. If f is any continuous function on [0, 1], then the previous theo-

rem shows that the function f(z) =
∫ 1

0
eiszf(s)ds is holomorphic in z, since clearly

F (z, s) = eiszf(z) is continuous as a function on C× [0, 1] and, for fixed s ∈ [0, 1],
F is holomorphic as a function of z. Integrals of this nature (though perhaps
over the whole real line or the positive real axis) arise frequently in many parts
of mathematics, as you can learn more about in the optional course on Integral
Transforms.

Remark 15.29. Another way to prove the theorem is to use Morera’s theorem di-
rectly: if γ : [0, 1]→ C is a closed path in B(a, r), then we have∫

γ

f(z)dz =

∫
γ

( ∫ 1

0

F (z, s)ds
)
dz

=

∫ 1

0

( ∫
γ

F (z, s)dz
)
ds = 0,

where in the first line we interchanged the order of integration, and in the second
we used the fact that F (z, s) is holomorphic in z and Cauchy’s theorem for a disk.
To make this completely rigorous however, one has to justify the interchange of the
orders of integration. Next term’s course on Integration proves a very general result
of this form known as Fubini’s theorem, but for continous functions on compact
subets of Rn one can give more elementary arguments by showing any such function
is a uniform limit of linear combinations of indicator functions of ”boxes” – the
higher dimensional analogues of step functions – and the elementary fact that the
interchange of the order of integration for indicator functions of boxes holds trivially.

16. The identity theorem, isolated zeros and singularities

The fact that any complex differentiable function is in fact analytic has some
very surprising consequences – the most striking of which is perhaps captured by
the “Identity theorem”. This says that if f, g are two holomorphic functions defined
on a domain U and we let S = {z ∈ U : f(z) = g(z)} be the locus on which they
are equal, then if S has a limit point in U it must actually be all of U . Thus for
example if there is a disk B(a, r) ⊆ U on which f and g agree (not matter how
small r is), then in fact they are equal on all of U ! The key to the proof of the
Identity theorem is the following result on the zeros of a holomorphic function:
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Proposition 16.1. Let U be an open set and suppose that g : U → C is holomorphic
on U . Let S = {z ∈ U : g(z) = 0}. If z0 ∈ S then either z0 is isolated in S (so that
g is non-zero in some disk about z0 except at z0 itself) or g = 0 on a neighbourhood
of z0. In the former case there is a unique integer k > 0 and holomorphic function
g1 such that g(z) = (z − z0)kg1(z) where g1(z0) 6= 0.

Proof. Pick any z0 ∈ U with g(z0) = 0. Since g is analytic at z0, if we pick r > 0
such that B̄(a, r) ⊆ U , then we may write

g(z) =

∞∑
k=0

ck(z − z0)k,

for all z ∈ B(z0, r) ⊆ U , where the coeficients ck are given as in Theorem 15.19.
Now if ck = 0 for all k, it follows that g(z) = 0 for all z ∈ B(0, r). Otherwise,
we set k = min{n ∈ N : cn 6= 0} (where since g(z0) = 0 we have c0 = 0 so that
k ≥ 1). Then if we let g1(z) = (z − z0)−kg(z), clearly g1(z) is holomorphic on
U\{z0}, but since in B(z0, r) we have we have g1(z) =

∑∞
n=0 ck+n(z − z0)n, it

follows if we set g1(z0) = ck 6= 0 then g1 becomes a holomorphic function on all
of U . Since g1 is continuous at z0 and g1(z0) 6= 0, there is an ε > 0 such that
g1(z) 6= 0 for all z ∈ B(z0, ε). But (z − z0)k vanishes only at z0, hence it follows
that g(z) = (z − z0)kg1(z) is non-zero on B(a, ε)\{z0}, so that z0 is isolated.

Finally, to see that k is unique, suppose that g(z) = (z−z0)kg1(z) = (z−z0)lg2(z)
say with g1(z0) and g2(z0) both nonzero. If k < l then g(z)/(z − z0)k = (z −
z0)l−kg2(z) for all z 6= z0, hence as z → z0 we have g(z)/(z − z0)k → 0, which
contradicts the assumption that g1(z) 6= 0. By symmetry we also cannot have
k > l so k = l as required. �

Remark 16.2. The integer k in the previous proposition is called the multiplicity of
the zero of g at z = z0 (or sometimes the order of vanishing).

Theorem 16.3. (Identity theorem): Let U be a domain and suppose that f1, f1

are holomorphic functions defined on U . Then if S = {z ∈ U : f1(z) = f2(z)} has
a limit point in U , we must have S = U , that is f1(z) = f2(z) for all z ∈ U .

Proof. Let g = f1 − f2, so that S = g−1({0}). We must show that if S has a limit
point then S = U . Since g is clearly holomorphic in U , by Proposition 16.1 we
see that if z0 ∈ S then either z0 is an isolated point of S or it lies in an open ball
contained in S. It follows that S = V ∪ T where T = {z ∈ S : z is isolated} and
V = int(S) is open. But since g is continuous, S = g−1({0}) is closed in U , thus
V ∪ T is closed, and so ClU (V ), the closure37 of V in U , lies in V ∪ T . However,
by definition, no limit point of V can lie in T so that ClU (V ) = V , and thus V is
open and closed in U . Since U is connected, it follows that V = ∅ or V = U . In
the former case, all the zeros of g are isolated so that S′ = T ′ = ∅ and S has no
limit points. In the latter case, V = S = U as required.

�

Remark 16.4. The requirement in the theorem that S have a limit point lying in U
is essential: If we take U = C\{0} and f1 = exp(1/z)− 1 and f2 = 0, then the set
S is just the points where f1 vanishes on U . Now the zeros of f1 have a limit point

37I use the notation ClU (V ), as opposed to V̄ , to emphasize that I mean the closure of V in
U , not in C, that is, ClU (V ) is equal to the union of V with the limits points of V which lie in U .
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at 0 /∈ U since f(1/(2πin)) = 0 for all n ∈ N, but certainly f1 is not identically
zero on U !

We now wish to study singularities of holomorphic functions. The key result
here is Riemann’s removable singularity theorem, Corollary 15.22.

Definition 16.5. If U is an open set in C and z0 ∈ U , we say that a function
f : U\{z0} → C has an isolated singularity at z0 if it is holomorphic on B(z0, r)\{z0}
for some r > 0.

Suppose that z0 is an isolated singularity of f . If f is bounded near z0 we say that
f has a removable singularity at z0, since by Corollary 15.22 it can be extended
to a holomorphic function at z0. If f is not bounded near z0, but the function
1/f(z) has a removable singularity at z0, that is, 1/f(z) extends to a holomorphic
function on all of B(z0, r), then we say that f has a pole at z0. By Proposition 16.1
we may write (1/f)(z) = (z − z0)mg(z) where g(z0) 6= 0 and m ∈ Z>0. (Note that
the extension of 1/f to z0 must vanish there, as otherwise f would be bounded
near z0.) We say that m is the order of the pole of f at z0. In this case we have
f(z) = (z− z0)−m.(1/g) near z0, where 1/g is holomorphic near z0 since g(z0) 6= 0.
If m = 1 we say that f has a simple pole at z0.

Finally, if f has an isolated singularity at z0 which is not removable nor a pole,
we say that z0 is an essential singularity.

Lemma 16.6. Let f be a holomorphic function with a pole of order m at z0. Then
there is an r > 0 such that for all z ∈ B(z0, r)\{z0} we have

f(z) =
∑
n≥−m

cn(z − z0)n

Proof. As we have already seen, we may write f(z) = (z − z0)−mh(z) where m
is the order of the pole of f at z0 and h(z) is holomorphic and non-vanishing at
z0. The claim follows since, near z0, h(z) is equal to its Taylor series at z0, and
multiplying this by (z − z0)−m gives a series of the required form for f(z). �

Definition 16.7. The series
∑
n≥−m cn(z− z0)n is called the Laurent series for f

at z0. We will show later that if f has an isolated essential singularity it still has
a Laurent series expansion, but the series is then involves infinitely many positive
and negative powers of (z − z0).

A function on an open set U which has only isolated singularities all of which
are poles is called a meromorphic function on U . (Thus, strictly speaking, it is a
function only defined on the complement of the poles in U .)

Lemma 16.8. Suppose that f has an isolated singularity at a point z0. Then z0 is
a pole if and only if |f(z)| → ∞ as z → z0.

Proof. If z0 is a pole of f then 1/f(z) = (z − z0)kg(z) where g(z0) 6= 0 and k > 0.
But then for z 6= z0 we have f(z) = (z− z0)−k(1/g(z)), and since g(z0) 6= 0, 1/g(z)
is bounded away from 0 near z0, while |(z − z0)−k| → ∞ as z → z0, so |f(z)| → ∞
as z → z0 as required.

On the other hand, if |f(z)| → ∞ as z → z0, then 1/f(z)→ 0 as z → z0, so that
1/f(z) has a removable singularity and f has a pole at z0. �

Remark 16.9. The previous Lemma motivates the following definition: The ex-
tended complex plane C∞ is the set C∪ {∞} where ∞ is taken to be an additional
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point “at infinity”. We will see later in the course that there is a natural way to
make C∞ into a metric space so that if f : U → C is a meromorphic function on a
domain U in C, and we set f(z0) =∞ whenever f has a pole at z0, then f becomes
a continuous function from U to C∞.

The case where f has an essential singularity is more complicated. We prove
that near an isolated singularity the values of a holomorphic function are dense:

Theorem 16.10. (Casorati-Weierstrass): Let U be an open subset of C and let a ∈
U . Suppose that f : U\{a} → C is a holomorphic function with an isolated essential
singularity at a. Then for all ρ > 0 with B(a, ρ) ⊆ U , the set f(B(a, ρ)\{a}) is
dense in C, that is, the closure of f(B(a, ρ)\{a}) is all of C.

Proof. Suppose, for the sake of a contradiction, that there is some ρ > 0 such that
z0 ∈ C is not a limit point of f(B(a, ρ)\{a}). Then the function g(z) = 1/(f(z)−z0)
is bounded and non-vanishing on B(a, ρ)\{a}, and hence by Riemann’s removable
singularity theorem, it extends to a holomorphic function on all of B(a, ρ). But
then f(z) = z0 + 1/g(z) has at most a pole at a which is a contradiction. �

Remark 16.11. In fact much more is true: Picard showed that if f has an isolated
essential singularity at z0 then in any open disk about z0 the function f takes every
complex value infinitely often with at most one exception. The example of the
function f(z) = exp(1/z), which has an essential singularity at z = 0 shows that
this result is best possible, since f(z) 6= 0 for all z 6= 0.

16.1. Principal parts.

Definition 16.12. Recall that by Lemma 16.6 if a function f has a pole of order
k at z0 then near z0 we may write

f(z) =
∑
n≥−k

cn(z − z0)n.

The function
∑−1
n=−k cn(z− z0)n is called the principal part of f at z0, and we will

denote it by Pz0(f). It is a rational function which is holomorphic on C\{z0}. Note
that f − Pz0(f) is holomorphic at z0 (and also holomorphic wherever f is). The
residue of f at z0 is defined to be the coefficient c−1 and denoted Resz0(f).

The most important term in the principal part Pz0(f) is the term c−1/(z −
z0). This is because every other term has a primitive on C\{z0}, hence by the
Fundamental Theorem of Calculus it is the only part which contributes to the
integral of f around a circle centered at z0. Indeed if γ is a circular path about z0

we have ∫
γ

f(z)dz =

∫
γ

Pz0(f) =

∫
γ

c−1

z − z0
dz = 2πic−1,

where the first equality holds by Cauchy’s theorem for starlike domain, since f −
Pz0(f) is holomorphic in the disk bounded by the image of γ. This is the key to
what is called the “calculus of residues” which will will study in detail later.

Lemma 16.13. Suppose that f has a pole of order m at z0, then

Resz0(f) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
((z − z0)mf(z))
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Proof. Since f has a pole of order m at z0 we have f(z) =
∑
n≥−m cn(z − z0)n for

z sufficiently close to z0. Thus

(z − z0)mf(z) = c−m + c−m+1(z − z0) + . . .+ c−1(z − z0)m−1 + . . .

and the result follows from the formula for the derivatives of a power series. �

Remark 16.14. The last lemma is perhaps most useful in the case where the pole
is simple, since in that case no derivatives need to be computed. In fact there is a
special case which is worth emphasizing: Suppose that f = g/h is a ratio of two
holomorphic functions defined on a domain U ⊆ C, where h is non-constant. Then
f is meromorphic with poles at the zeros38 of h. In particular, if h has a simple
zero at z0 and g is non-vanishing there, then f correspondingly has a simple pole
at z0. Since the zero of h is simple at z0, we must have h′(z0) 6= 0, and hence by
the previous result

Resz0(f) = lim
z→z0

g(z)(z − z0)

h(z)
= lim
z→z0

g(z). lim
z→z0

z − z0

h(z)− h(z0)
= g(z0)/h′(z0)

where the last equality holds by standard Algebra of Limits results.

38Strictly speaking, the poles of f form a subset of the zeros of h, since if g also vanishes at a
point z0, then f may have a removable singularity at z0.
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17. Homotopies, simply-connected domains and Cauchy’s theorem

A crucial point in our proof of Cauchy’s theorem for a triangle was that the inte-
rior of the triangle was entirely contained in the open set on which our holomorphic
function f was defined. In general however, given a closed curve, it is not always
easy to say what we mean by the “interior” of the curve. In fact there is a famous
theorem, known as the Jordan Curve Theorem, which resolves this problem, but
to prove it would take us too far afield. Instead we will take a slightly different
strategy: in fact we will take two different approaches: the first using the notion of
homotopy and the second using the winding number. For the homotopy approach,
rather than focusing only on closed curves and their “interiors” we consider arbi-
trary curves and study what it means to deform one to another.

Definition 17.1. Suppose that U is an open set in C and a, b ∈ U . If η : [0, 1]→ U
and γ : [0, 1] → U are paths in U such that γ(0) = η(0) = a and γ(1) = η(1) = b,
then we say that γ and η are homotopic in U if there is a continuous function
h : [0, 1]× [0, 1]→ U such that

h(0, s) = a, h(1, s) = b

h(t, 0) = γ(t), h(t, 1) = η(t).

One should think of h as a family of paths in U indexed by the second variable s
which continuously deform γ into η.

A special case of the above definition is when a = b and γ and η are closed paths.
In this case there is a constant path ca : [0, 1] → U going from a to b = a which
is simply given by ca(t) = a for all t ∈ [0, 1]. We say a closed path starting and
ending at a point a ∈ U is null homotopic if it is homotopic to the constant path
ca. One can show that the relation “γ is homotopic to η” is an equivalence relation,
so that any path γ between a and b belongs to a unique equivalence class, known
as its homotopy class.

Definition 17.2. Suppose that U is a domain in C. We say that U is simply
connected if for every a, b ∈ U , any two paths from a to b are homotopic in U .

Lemma 17.3. Let U be a convex open set in C. Then U is simply connected.
Moreover if U1 and U2 are homeomorphic, then U1 is simply connected if and only
if U2 is.

Proof. Suppose that γ : [0, 1]→ U and η : [0, 1]→ U are paths starting and ending
at a and b respectively for some a, b ∈ U . Then for (s, t) ∈ [0, 1]× [0, 1] let

h(t, s) = (1− s)γ(t) + sη(t)

It is clear that h is continuous and one readily checks that h gives the required
homotopy. For the moreover part, if f : U1 → U2 is a homeomorphism then it is
clear that f induces a bijection between continuous paths in U1 to those in U2 and
also homotopies in U1 to those in U2, so the claim follows. �

Remark 17.4. (Non-examinable) In fact, with a bit more work, one can show that
any starlike domain D is also simply-connected. The key is to show that a domain
is simply-connected if all closed paths starting and ending at a given point z0 ∈ D
are null-homotopic. If D is star-like with respect to z0 ∈ D, then if γ : [0, 1] → D
is a closed path with γ(0) = γ(1) = z0, it follows h(s, t) = z0 + s(γ(t)− z0) gives a
homotopy between γ and the constant path cz0 .
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Thus we see that we already know many examples of simply connected domains
in the plane, such as disks, ellipsoids, half-planes. The second part of the above
lemma also allows us to produce non-convex examples:

Example 17.5. Consider the domain

Dη,ε = {z ∈ C : z = reiθ : η < r < 1, 0 < θ < 2π(1− ε)},

where 0 < η, ε < 1/10 say, then Dη,ε is clearly not convex, but it is the image of
the convex set (0, 1)× (0, 1− ε) under the map (r, θ) 7→ re2πiθ. Since this map has
a continuous (and even differentiable) inverse, it follows Dη,ε is simply-connected.
When η and ε are small, the boundary of this set, oriented anti-clockwise, is a
version of what is called a key-hole contour.

We are now ready to state our extension of Cauchy’s theorem. The proof is given
in the Appendices.

Theorem 17.6. Let U be a domain in C and a, b ∈ U . Suppose that γ and η
are paths from a to b which are homotopic in U and f : U → C is a holomorphic
function. Then ∫

γ

f(z)dz =

∫
η

f(z)dz.

Remark 17.7. Notice that this theorem is really more general than the previous
versions of Cauchy’s theorem we have seen – in the case where a holomorphic
function f : U → C has a primitive the conclusion of the previous theorem is of
course obvious from the Fundamental theorem of Calculus39, and our previous
formulations of Cauchy’s theorem were proved by producing a primitive for f on
U . One significance of the homotopy form of Cauchy’s theorem is that it applies to
domains U even when there is no primitive for f on U .

Theorem 17.8. Suppose that U is a simply-connected domain, let a, b ∈ U , and
let f : U → C be a holomorphic function on U . Then if γ1, γ2 are paths from a to
b we have ∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

In particular, if γ is a closed oriented curve we have
∫
γ
f(z)dz = 0, and hence any

holomorphic function on U has a primitive.

Proof. Since U is simply-connected, any two paths from from a to b are homotopic,
so we can apply Theorem 17.6. For the last part, in a simply-connected domain any
closed path γ : [0, 1] → U , with γ(0) = γ(1) = a say, is homotopic to the constant
path ca(t) = a, and hence

∫
γ
f(z)dz =

∫
ca
f(z)dz = 0. The final assertion then

follows from the Theorem 14.21. �

Example 17.9. If U ⊆ C\{0} is simply-connected, the previous theorem shows
that there is a holomorphic branch of [Log(z)] defined on all of U (since any prim-
itive for f(z) = 1/z will be such a branch).

39Indeed the hypothesis that the paths γ and η are homotopic is irrelevant when f has a
primitive on U .
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Remark 17.10. Recall that in Definition 15.8 we called a domain D in the complex
plane primtive if every holomorphic function f : D → C on it had a primitive.
Theorem 17.8 shows that any simply-connected domain is primitive. In fact the
converse is also true – any primitive domain is necessarily simply-connected. Thus
the term “primitive domain” is in fact another name for a simply-connected domain.

Note that if w /∈ D then f(z) = 1/(z−w) is holomorphic on D and hence if D is
primitive we see that, for any closed path γ in D, the winding number I(γ,w) of γ
around w is zero. This is not enough to show that any simply-connected domain is
primitive, however one can deduce this from the Riemann Mapping Theorem which
we will discuss (but not prove) later in the course.

18. Winding numbers

Suppose that γ : [0, 1] → C is a closed path which does not pass through 0.
We would like to give a rigorous definition of the number of times γ “goes around
the origin”. Roughly speaking, this will be the change in argument arg(γ(t)),
and therein lies the difficulty, since arg(z) cannot be defined continuously on all
of C\{0}. The next Proposition shows that we can however always define the
argument as a continuous function of the parameter t ∈ [0, 1]:

Proposition 18.1. Let γ : [0, 1] → C\{0} be a path. Then there is continuous
function a : [0, 1]→ R such that

γ(t) = |γ(t)|e2πia(t).

Moreover, if a and b are two such functions, then there exists n ∈ Z such that
a(t) = b(t) + n for all t ∈ [0, 1].

Proof. By replacing γ(t) with γ(t)/|γ(t)| we may assume that |γ(t)| = 1 for all t.
Since γ is continuous on a compact set, it is uniformly continuous, so that there
is a δ > 0 such that |γ(s) − γ(t)| <

√
3 for any s, t with |s − t| < δ. Choose an

integer n > 0 such that n > 1/δ so that on each subinterval [i/n, (i + 1)/n] we

have |γ(s) − γ(t)| <
√

3. Now on any half-plane in C we may certainly define a
holomorphic branch of [Log(z)] (simply pick a branch cut along a ray in the opposite
half-plane) and hence a continuous argument function, and if |z1| = |z2| = 1 and

|z1 − z2| <
√

3, then the angle between z1 and z2 is at most 2π/3. It follows there
exists a continuous functions ai : [i/n, (i+ 1)/n]→ R such that γ(t) = e2πiai(t) for
t ∈ [i/n, (i+1)/n]. Now since e2πiai(i/n) = e2πiai−1(i/n) ai−1(i/n) and ai(i/n) differ
by an integer. Thus we can successively adjust the ai for i > 1 by an integer (as
if γ(t) = e2πiai(t) then γ(t) = e2πi(a(t)+n) for any n ∈ Z) to obtain a continuous
function a : [0, 1]→ C such that γ(t) = e2πia(t) as required. Finally, the uniqueness
statement follows because e2πi(a(t)−b(t)) = 1, hence a(t)− b(t) ∈ Z, and since [0, 1]
is connected it follows a(t)− b(t) is constant as required. �

Definition 18.2. If γ : [0, 1] → C\{0} is a closed path and γ(t) = |γ(t)|e2πia(t)

as in the previous lemma, then since γ(0) = γ(1) we must have a(1) − a(0) ∈ Z.
This integer is called the winding number I(γ, 0) of γ around 0. It is uniquely
determined by the path γ because the function a is unique up to an integer. By
tranlation, if γ is any closed path and z0 is not in the image of γ, we may define
the winding number I(γ, z0) of γ about z0 in the same fashion. Explicitly, if γ is a
closed path with z0 /∈ γ∗ then let t : C → C be given by t(z) = z − z0 and define
I(γ, z0) = I(t ◦ γ, 0).
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Remark 18.3. Note that if γ : [0, 1]→ U where 0 /∈ U and there exists a holomorphic
branch L : U → C of [Log(z)] on U , then I(γ, 0) = 0. Indeed in this case we may
define a(t) = =(L(γ(t))), and since γ(0) = γ(1) it follows a(1)−a(0) = 0 as claimed.
Note also that the definition of the winding number only requires the closed path
γ to be continuous, not piecewise C1. Of course as usual, we will mostly only be
interested in piecewise C1 paths, as these are the ones along which we can integrate
functions.

We now see that the winding number has a natural interpretation in term of path
integrals: Note that if γ is piecewise C1 then the function a(t) is also piecewise C1,
since any branch of the logarithm function is in fact differentiable where it is defined,
and a(t) is locally given as =(log(γ(t)) for a suitable branch.

Lemma 18.4. Let γ be a piecewise C1 closed path and z0 ∈ C a point not in the
image of γ. Then the winding number I(γ, z0) of γ around z0 is equal to

1

2πi

∫
γ

dz

z − z0
.

In particular, if γ1, γ2 are two paths which are homotopic via a homotopy h : [0, 1]×
[0, 1]→ C\{z0} then I(γ1, z0) = I(γ2, z0).

Proof. If γ : [0, 1] → C we may write γ(t) = z0 + r(t)e2πia(t) (where r(t) = |γ(t) −
z0| > 0 is continuous and the existence of a(t) is guaranteed by Proposition 18.1).
Then we have∫

γ

dz

z − z0
=

∫ 1

0

1

r(t)e2πia(t)
. (r′(t) + 2πir(t)a′(t)) e2πia(t)dt

=

∫ 1

0

r′(t)/r(t) + 2πia′(t)dt = [log(r(t)) + 2πia(t)]10

= 2πi(a(1)− a(0)),

since r(1) = r(0) = |γ(0)− z0|. The last sentence now follows easily from Theorem
17.6. �

Remark 18.5. Note that in particular the integral formula for the winding number
of course gives another proof that it only depends on the path γ. One can of course
prove more directly that the winding number of two homotopic paths is constant –
intuitively it is clear since it is a “continuously varying” function of the path, and
thus as it is integer valued, it must be constant on homotopy classes of paths.

Lemma 18.6. Let U be an open set in C and let γ : [0, 1]→ U be a closed path. If
f(z) is a continuous function on γ∗ then the function

If (γ,w) =

∫
γ

f(z)

z − w
dz,

is holomorphic40 in z. In particular, if f(z) = 1 this shows that the function
z 7→ I(γ, z) is a continuous function on C\γ∗, and hence, since it is integer-valued,
it is constant on the connected components of C\γ∗.

40This Lemma is an easy generalization of Lemma 15.18 – essentially the same proof works.
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Proof. Fix z0 ∈ C\γ∗. Since C\γ∗ is open, it suffices to show that If (γ, z) is
holomorphic in B(z0, r) ⊆ C\γ∗ for some r > 0. Translating if necessary we may
assume that z0 = 0. Now since 0 /∈ γ∗ we have 2r = min{|γ(t)| : t ∈ [0, 1]} > 0. We
claim that If (γ, z) is holomorphic in B(0.r). Indeed if w ∈ B(0, r) and z ∈ γ∗ it
follows that |w/z| < 1/2. Moreover, since γ∗ is compact, M = sup{|f(z)| : z ∈ γ∗}
is finite, and hence

|f(z).wn/zn+1| < M

2r
(1/2)n, ∀z ∈ γ∗.

It follows from the Weierstrass M -test that the series
∑∞
n=0

f(z).wn

zn+1 converges uni-
formly on γ∗ to f(z)/(z − w). Thus for all w ∈ B(0, r) we have

If (γ,w) =

∫
γ

f(z)dz

z − w
=

∞∑
n=0

(∫
γ

f(z)

zn+1
dz

)
wn,

hence If (γ,w) is given by a power series in B(0, r) and hence is holomorphic there
as required.

Finally, if f = 1, then since I1(γ, z) = I(γ, z) is integer-valued, it follows it must
be constant on any connected component of C\γ∗ as required. �

Remark 18.7. If γ is a closed path then γ∗ is compact and hence bounded. Thus
there is an R > 0 such that the connected set C\B(0, R) ∩ γ∗ = ∅. It follows that
C\γ∗ has exactly one unbounded connected component. Since∣∣ ∫

γ

dζ

ζ − z
∣∣ ≤ `(γ). sup

ζ∈γ∗
|1/(ζ − z)| → 0

as z →∞ it follows that I(γ, z) = 0 on the unbounded component of C\γ∗.

Definition 18.8. Let γ : [0, 1] → C be a closed path. We say that a point z is
in the inside41 of γ if z /∈ γ∗ and I(γ, z) 6= 0. The previous remark shows that
the inside of γ is a union of bounded connected components of C\γ∗. (We don’t,
however, know that the inside of γ is necessarily non-empty.)

Example 18.9. Suppose that γ1 : [−π, π] → C is given by γ1 = 1 + eit and
γ2 : [0, 2π] → C is given by γ2(t) = −1 + e−it. Then if γ = γ1 ? γ2, γ traverses
a figure-of-eight and it is easy to check that the inside of γ is B(1, 1) ∪ B(−1, 1)
where I(γ, z) = 1 for z ∈ B(1, 1) while I(γ, z) = −1 for z ∈ B(−1, 1).

Remark 18.10. It is a theorem, known as the Jordan Curve Theorem, that if
γ : [0, 1] → C is a simple closed curve, so that γ(t) = γ(s) if and only if s = t or
s, t ∈ {0, 1}, then C\γ∗ is the union of precisely one bounded and one unbounded
component, and on the bounded component I(γ, z) is either 1 or −1. If I(γ, z) = 1
for z on the inside of γ we say γ is postively oriented and we say it is negatively
oriented if I(γ, z) = −1 for z on the inside.

The definition of winding number allows us to give another version of Cauchy’s in-
tegral formula (sometimes called the winding number or homology form of Cauchy’s
theorem).

41The term interior of γ might be more natural, but we have already used this in the first
part of the course to mean something quite different.
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Theorem 18.11. Let f : U → C be a holomorphic function and let γ : [0, 1] → U
be a closed path whose inside lies entirely in U , that is I(γ, z) = 0 for all z /∈ U .
Then we have, for all z ∈ U\γ∗,∫

γ

f(ζ)dζ = 0;

∫
γ

f(ζ)

ζ − z
dζ = 2πiI(γ, z)f(z), ∀z ∈ U\γ∗.

Moreover, if U is simply-connected and γ : [a, b] → U is any closed path, then
I(γ, z) = 0 for any z /∈ U , so the above identities hold for all closed paths in such
U .

Remark 18.12. This version of Cauchy’s theorem has a natural extension: instead of
integrating over a single closed path, one can integrate over formal sums of closed
paths, which are known as cycles: if a ∈ N and γ1, . . . , γk are closed paths and
a1, . . . , ak are complex numbers (we will usually only consider the case where they

are integers) then we define the integral around the formal sum Γ =
∑k
i=1 aiγi of a

function f to be ∫
Γ

f(z)dz =

k∑
i=1

ai

∫
γi

f(z)dz.

Since the winding number can be expressed as an integral, this also gives a natural

defintion of the winding number for such Γ: explicitly I(Γ, z) =
∑k
i=1 aiI(γi, z).

If we write Γ∗ = γ∗1 ∪ . . . ∪ γ∗k then I(Γ, z) is defined for all z /∈ Γ∗. The winding
number version Cauchy’s theorem then holds (with the same proof) for cycles in an
open set U , where we define the inside of a cycle to be the set of z ∈ C for which
I(Γ, z) 6= 0.

Note that if z is inside Γ then it must be the case that z is inside some γi,
but the converse is not necessarily the case: it may be that z lies inside some of
the γi but does not lie inside Γ. One natural way in which cycles arise are as the
boundaries of an open subsets of the plane: if Ω is an domain in the plane, then
∂Ω, the boundary of Ω is often a union of curves rather than a single curve42. For
example if r < R then Ω = B(0, R)\B̄(0, r) has a boundary which is a union of two
concentric circles. If these circles are oriented correctly, then the “inside” of the
cycle Γ which they form is precisely Ω (see the discussion of Laurent series below
for more details). Thus the origin, although inside each of the circles γ(0, r) and
γ(0, R), is not inside Γ. The cycles version of Cauchy’s theorem is thus closest to
Green’s theorem in multivariable calculus.

As a first application of this new form of Cauchy’s theorem, we establish the
Laurent expansion of a function which is holomorphic in an annulus. This is a
generalization of Taylor’s theorem, and we already saw it in the special case of a
function with a pole singularity.

Definition 18.13. Let 0 < r < R be real numbers and let z0 ∈ C. An open
annulus is a set

A = A(r,R, z0) = B(z0, R)\B̄(z0, r) = {z ∈ C : r < |z − z0| < R}.
If we write (for s > 0) γ(z0, s) for the closed path t 7→ z0 + se2πit then notice that
the inside of the cycle Γr,R,z0 = γ(z0, R) − γ(z0, r) is precisely A, since for any s,
I(γ(z0, s), z) is 1 precisely if z ∈ B(z0, s) and 0 otherwise.

42Of course in general the boundary of an open set need not be so nice as to be a union of
curves at all.
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Theorem 18.14. Suppose that 0 < r < R and A = A(r,R, z0) is an annulus
centred at z0. If f : A→ C is holomorphic in an open set containing Ā, then there
exist cn ∈ C such that

f(z) =

∞∑
n=−∞

cn(z − z0)n, ∀z ∈ A.

Moreover, the cn are unique and are given by the following formulae:

cn =
1

2πi

∫
γR

f(z)

(z − z0)n+1
dz, if n ≥ 0; cn =

1

2πi

∫
γr

f(z)

(z − z0)n+1
dz;n < 0

where γR(t) = z0 + Re2πit and γr(t) = z0 + re2πit are positively oriented paths
traversing the two boundary circles of A.

Proof. By translation we may assume that z0 = 0. Since A is the inside of the cycle
Γr,R,z0 it follows from the winding number form of Cauchy’s integral formula that
for w ∈ A we have

2πif(w) =

∫
γR

f(z)

z − w
dz −

∫
γr

f(z)

z − w
dz

But now the result follows in the same way as we showed holomorphic functions
were analytic: if we fix w, then, for |w| < |z| we have 1

z−w =
∑∞
n=0 w

n/zn+1,

converging uniformly in z in |z| > |w|+ ε for any ε > 0. It follows that∫
γR

f(z)

z − w
dz =

∫
γR

∞∑
n=0

f(z)wn

zn+1
dz =

∑
n≥0

(∫
γR

f(z)

zn+1
dz

)
wn.

for all w ∈ A. Similarly since for |z| < |w| we have43 1
w−z =

∑
n≥0 z

n/wn+1 =∑−∞
n=−1 w

n/zn+1, again converging uniformly on |z| when |z| < |w| − ε for ε > 0,
we see that∫

γr

f(z)

w − z
dz =

∫
γr

−∞∑
n=−1

f(z)wn/zn+1dz =

−∞∑
n=−1

( ∫
γr

f(z)

zn+1
dz
)
wn.

Thus taking (cn)n∈Z as in the statement of the theorem, we see that

f(w) =
1

2πi

∫
γR

f(z)

z − w
dz − 1

2πi

∫
γr

f(z)

z − w
dz =

∑
n∈Z

cnz
n,

as required. To see that the cn are unique, one checks using uniform convergence
that if

∑
n∈Z dnz

n is any series expansion for f(z) on A, then the dn must be given
by the integral formulae in the statement of the theorem. �

Remark 18.15. Note that the above proof shows that the integral
∫
γR

f(z)
z−wdz de-

fines a holomorphic function of w in B(z0, R), while
∫
γr

f(z)
z−wdz defines a holomor-

phic function of w on C\B(z0, r). Thus we have actually expressed f(w) on A as
the difference of two functions which are holomorphic on B(z0, R) and C\B̄(z0, r)
respectively. Note moreover that using the winding number version of Cauchy’s

43Note the sign change.
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theorem it is easy to check that the coefficients in the Laurent series are in fact give
by the formula

cn =
1

2πi

∫
γr

f(z)

(z − a)n+1
dz

for all n ∈ Z and r ∈ [r,R], where γr(t) = a + re2πit, since by assumption f is
holomorphic between the circles γr and γR.

Definition 18.16. Let f : U\S → C be a function which is holomorphic on a
domain U except at a discrete set S ⊆ U . Then for any a ∈ S the previous theorem
shows that for r > 0 sufficiently small, we have

f(z) =
∑
n∈Z

cn(z − a)n, ∀z ∈ B(a, r)\{a}.

We define

Pa(f) =

−∞∑
n=−1

cn(z − a)n,

to be the principal part of f at a, and we set c−1 to be the residue of f at a. This
generalizes the previous definitions we gave for the principal part and residue of
a meromorphic function at a pole. Note that the proof of Theorem 18.14 shows
that the series Pa(f) is uniformly convergent on C\B(a, r) for all r > 0, and hence
defines a holomorphic function on C\{a}.

We can now prove one of the most useful theorems of the course – it is extremely
powerful as a method for computing integrals, as you will see this course and many
others.

Theorem 18.17. (Residue theorem): Suppose that U is an open set in C and γ is
a path whose inside is contained in U , so that for all z /∈ U we have I(γ, z) = 0.
Then if S ⊂ U is a finite set such that S ∩ γ∗ = ∅ and f is a holomorphic function
on U\S we have

1

2πi

∫
γ

f(z)dz =
∑
a∈S

I(γ, a)Resa(f)

Proof. For each a ∈ S let Pa(f)(z) =
∑−∞
n=−1 cn(a)(z − a)n be the principal part

of f at a, a holomorphic function on C\{a}. Then by definition of Pa(f), the
difference f − Pa(f) is holomorphic at a ∈ S, and thus g(z) = f(z)−

∑
a∈S Pa(f)

is holomorphic on all of U . But then by Theorem 18.11 we see that
∫
γ
g(z)dz = 0,

so that ∫
γ

f(z)dz =
∑
a∈S

∫
γ

Pa(f)(z)dz

But by the proof of Theorem 18.14, the series Pa(f) converges uniformly on γ∗

so that ∫
γ

Pa(f)dz =

∫
γ

−∞∑
n=−1

cn(a)(z − a)n =

∞∑
n=1

∫
γ

c−n(a)dz

(z − a)n

=

∫
γ

c−1(a)dz

z − a
= I(γ, a)Resa(f),

since for n > 1 the function (z − a)−n has a primitive on C\{a}. The result
follows. �
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Remark 18.18. In practice, in applications of the residue theorem, the winding
numbers I(γ, a) will be simple to compute in terms of the argument of (z − a) –
in fact most often they will be 0 or ±1 as we will usually apply the theorem to
integrals around simple closed curves.

19. Residue Calculus

The Residue theorem gives us a very powerful technique for computing many
kinds of integrals. In this section we give a number of examples of its application.

Example 19.1. Consider the integral
∫ 2π

0
dt

1+3 cos2(t) . If we let γ be the path t 7→ eit

and let z = eit then cos(t) = <(z) = 1
2 (z + z̄) = 1

2 (z + 1/z). Thus we have

1

1 + 3 cos2(t)
=

1

1 + 3/4(z + 1/z)2
=

1

1 + 3
4z

2 + 3
2 + 3

4z
2

=
4z2

3 + 10z2 + 3z4
,

Finally, since dz = izdt it follows∫ 2π

0

dt

1 + 3 cos2(t)
=

∫
γ

−4iz

3 + 10z2 + 3z4
dz.

Thus we have turned our real integral into a contour integral, and to evaluate the
contour integral we just need to calculate the residues of the meromorphic function
g(z) = −4iz

3+10z2+3z4 at the poles it has inside the unit circle. Now the poles of g(z)

are the zeros of the polynomial p(z) = 3+10z2 +3z4, which are at z2 ∈ {−3,−1/3}.
Thus the poles inside the unit circle are at ±i/

√
3. In particular, since p has degree

4 and has four roots, they must all be simple zeros, and so g has simple poles
at these points. The residue at a simple pole z0 can be calculated as the limit
limz∈z0(z − z0)g(z), thus we see (compare with Remark 16.14) that

Resz=±i/
√

3(g(z)) = lim
z→±i/

√
3

−4iz(z −±i/
√

3)

3 + 10z2 + 3z4
= (±4/

√
3).

1

p′(±i/
√

3)

= (±4/
√

3).
1

20(±i/
√

3) + 12(±i/
√

3)3
= 1/4i.

It now follows from the Residue theorem that∫ 2π

0

dt

1 + 3 cos2(t)
= 2πi

(
Resz=i/

√
3((g(z)) + Resz=−i/

√
3(g(z))

)
= π.

Remark 19.2. Often we are interested in integrating along a path which is not
closed or even finite, for example, we might wish to understand the integral of a
function on the positive real axis. The residue theorem can still be a power tool in
calculating these integrals, provided we complete the path to a closed one in such
a way that we can control the extra contribution to the integral along the part of
the path we add.

Example 19.3. If we have a function f which we wish to integrate over the whole
real line (so we have to treat it as an improper Riemann integral) then we may
consider the contours ΓR given as the concatenation of the paths γ1 : [−R,R]→ C
and γ2 : [0, 1]→ C where

γ1(t) = −R+ t; γ2(t) = Reiπt.

(so that ΓR = γ2 ? γ1 traces out the boundary of a half-disk). In many cases one
can show that

∫
γ2
f(z)dz tends to 0 as R → ∞, and by calculating the residues
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inside the contours ΓR deduce the integral of f on (−∞,∞). To see this strategy
in action, consider the integral ∫ ∞

0

dx

1 + x2 + x4
.

It is easy to check that this integral exists as an improper Riemann integral, and
since the integrand is even, it is equal to

1

2
lim
R→∞

∫ R

−R

dx

1 + x2 + x4
dx.

If f(z) = 1/(1 + z2 + z4), then
∫

ΓR
f(z)dz is equal to 2πi times the sum of the

residues inside the path ΓR. The function f(z) = 1/(1 + z2 + z4) has poles at
z2 = ±e2πi/3 and hence at {eπi/3, e2πi/3, e4πi/3, e5πi/3}. They are all simple poles
and of these only {ω, ω2} are in the upper-half plane, where ω = eiπ/3. Thus by
the residue theorem, for all R > 1 we have∫

ΓR

f(z)dz = 2πi
(
Resω(f(z)) + Resω2(f(z))

)
,

and we may calculate the residues using the limit formula as above (and the fact that
it evaluates to the reciprocal of the derivative of 1+z2 +z4): Indeed since ω3 = −1
we have Resω(f(z)) = 1

2ω+4ω3 = 1
2ω−4 , while Resω2(f(z)) = 1

2ω2+4ω6 = 1
4+2ω2 .

Thus we obtain:∫
ΓR

f(z)dz = 2πi
( 1

2ω − 4
+

1

2ω2 + 4
)

= πi
( 1

ω − 2
+

1

ω2 + 2

)
= πi

( ω2 + ω

2(ω − ω2)− 5

)
= −
√

3π/(−3) = π/
√

3,

(where we used the fact that ω2 + ω = i
√

3 and ω − ω2 = 1). Now clearly∫
ΓR

f(z)dz =

∫ R

−R

dt

1 + t2 + t4
+

∫
γ2

f(z)dz,

and by the estimation lemma we have∣∣ ∫
γ2

f(z)dz
∣∣ ≤ sup

z∈γ∗2
|f(z)|.`(γ2) ≤ πR

R4 −R2 − 1
→ 0,

as R→∞, it follows that

π/
√

3 = lim
R→∞

∫
ΓR

f(z)dz =

∫ ∞
−∞

dt

1 + t2 + t4
.

19.1. Jordan’s Lemma and applications. The following lemma is a real-variable
fact which is fundamental to something known as convexity. Note that if x, y are
vectors in any vector space then the set {tx+ (1− t)y : t ∈ [0, 1]} describes the line
segment between x and y.

Lemma 19.4. Let g : R → R be a twice differentiable function. Then if [a, b] is
an interval on which g′′(x) < 0, the function g is convex on [a, b], that is, for
x < y ∈ [a, b] we have

g(tx+ (1− t)y) ≥ tg(x) + (1− t)g(y), t ∈ [0, 1].
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Thus informally speaking, chords between points on the graph of g lie below the
graph itself.

Proof. Given x, y ∈ [a, b] and t ∈ [0, 1] let ξ = tx+ (1− t)y, a point in the interval
between x and y. Now the slope of the chord between (x, g(x)) and (ξ, g(ξ)) is, by
the Mean Value Theorem, equal to g′(s1) where s1 lies between x and ξ, while the
slope of the chord between (ξ, g(ξ)) and (y, g(y)) is equal to g′(s2) for s2 between
ξ and y. If g(ξ) < tg(x) + (1 − t)g(y) it follows that g′(s1) < 0 and g′(s2) > 0.
Thus by the mean value theorem for g′(x) applied to the points s1 and s2 it follows
there is an s ∈ (s1, s2) with g′′(s) = (g′(s2) − g′(s1))/(s2 − s1) > 0, contradicting
the assumption that g′′(x) is negative on (a, b). �

The following lemma is an easy application of this convexity result.

Lemma 19.5. (Jordan’s Lemma): Let f : H→ C∞ be a meromorphic function on
the upper-half plane H = {z ∈ C : =(z) > 0}. Suppose that f(z)→ 0 as z →∞ in
H. Then if γR(t) = Reit for t ∈ [0, π] we have∫

γR

f(z)eiαzdz → 0

as R→∞ for all α ∈ R≥0.

Proof. Suppose that ε > 0 is given. Then by assumption we may find an S such
that for |z| > S we have |f(z)| < ε. Thus if R > S and z = γR(t), it follows that

|f(z)eiαz| =≤ εe−αR sin(t).

But now applying Lemma 19.4 to the function g(t) = sin(t) with x = 0 and y = π/2
we see that sin(t) ≥ 2

π t for t ∈ [0, π/2]. Similarly we have sin(π − t) ≥ 2(π − t)/π
for t ∈ [π/2, π]. Thus we have

|f(z)eiαz| ≤
{

ε.e−2αRt/π, t ∈ [0, π/2]
ε.e−2αR(π−t)/π t ∈ [π/2, π]

But then it follows that∣∣ ∫
γR

f(z)eiαzdz
∣∣ ≤ 2

∫ π/2

0

εR.e−2αRt/πdt = ε.π
1− e−αR

α
< ε.π/α,

Thus since π/α > 0 is independent of R, it follows that
∫
γR
f(z)eiαzdz → 0 as

R→∞ as required. �

Remark 19.6. If ηR is an arc of a semicircle in the upper half plane, say ηR(t) = Reit

for 0 ≤ t ≤ 2π/3, then the same proof shows that
∫
ηR
f(z)eiαzdz tends to zero as

R tends to infinity. This is sometimes useful when integrating around the boudary
of a sector of disk (that is a set of the form {reiθ : 0 ≤ r ≤ R, θ ∈ [θ1, θ2]}).

It is also useful to note that if α < 0 then the integral of f(z)eiαz around a
semicircle in the lower half plane tends to zero as the radius of the semicircle tends
to infinity provided |f(z)| → 0 as |z| → ∞ in the lower half plane. This follows
immediately from the above applied to f(−z).

Example 19.7. Consider the integral
∫∞
−∞

sin(x)
x dx. This is an improper integral

of an even function, thus it exists if and only if the limit of
∫ R
−R

sin(x)
x dx exists as

R→∞. To compute this consider the integral along the closed curve ηR given by
the concatenation ηR = νR ? γR, where νR : [−R,R] → R given by νR(t) = t and



84 KEVIN MCGERTY.

γR(t) = Reit (where t ∈ [0, π]). Now if we let f(z) = eiz−1
z , then f has a removable

singularity at z = 0 (as is easily seen by considering the power series expansion of
eiz) and so is an entire function. Thus we have

∫
ηR
f(z)dz = 0 for all R > 0. Thus

we have

0 =

∫
ηR

f(z)dz =

∫ R

−R
f(t)dt+

∫
γR

eiz

z
dz −

∫
γR

dz

z
.

Now Jordan’s lemma ensures that the second term on the right tends to zero as R→
∞, while the third term integrates to

∫ π
0
iReit

Reit dt = iπ. It follows that
∫ R
−R f(t)dt

tends to iπ as R→∞. and hence taking imaginary parts we conclude the improper

integral
∫∞
−∞

sin(x)
x dx is equal to π.

Remark 19.8. The function f(z) = eiz−1
z might not have been the first meromorphic

function one could have thought of when presented with the previous improper

integral. A more natural candidate might have been g(z) = eiz

z . There is an obvious
problem with this choice however, which is that it has a pole on the contour we wish
to integrate around. In the case where the pole is simple (as it is for eiz/z) there
is standard procedure for modifying the contour: one indents it by a small circular
arc around the pole. Explicitly, we replace the νR with ν−R ?γε ?ν

+
R where ν±R (t) = t

and t ∈ [−R,−ε] for ν−R , and t ∈ [ε, R] for ν+
R (and as above γε(t) = εei(π−t) for

t ∈ [0, π]). Since sin(x)
x is bounded at x = 0 the sum∫ −ε
−R

sin(x)

x
dx+

∫ R

ε

sin(x)

x
dx→

∫ R

−R

sin(x)

x
dx,

as ε → 0, while the integral along γε can be computed explicitly: by the Taylor

expansion of eiz we see that Resz=0
eiz

z = 1, so that eiz − 1/z is bounded near

0. It follows that as ε → 0 we have
∫
γε

(eiz/z − 1/z)dz → 0. On the other hand∫
γε
dz/z =

∫ 0

−π(−εiei(π−t))/(ei(π−t)dt = −iπ, so that we see∫
γε

eiz

z
dz → −iπ

as ε→ 0.
Combining all of this we conclude that if Γε = ν−R ? γε ? ν

+
R ? γR then

0 =

∫
Γε

f(z)dz =

∫ −ε
−R

eix

x
dx+

∫
γε

eiz

z
dz +

∫ R

ε

eix

x
dx+

∫
γR

eiz

z
dz.

= 2i

∫ R

ε

sin(x)

x
+

∫
γε

eiz

z
+

∫
γR

eiz

z
dz

→ 2i

∫ R

0

sin(x)

x
dx− iπ +

∫
γR

eiz

z
dz.

as ε→ 0. Then letting R→∞, it follows from Jordans Lemma that the third term
tends to zero so we see that∫ ∞

−∞

sin(x)

x
dx = 2

∫ ∞
0

sin(x)

x
dx = π

as required.

We record a general version of the calculation we made for the contribution of
the indentation to a contour in the following Lemma.
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Lemma 19.9. Let f : U → C be a meromorphic function with a simple pole at
a ∈ U and let γε : [α, β]→ C be the path γε(t) = a+ εeit, then

lim
ε→0

∫
γε

f(z)dz = Resa(f).(β − α)i.

Proof. Since f has a simple pole at a, we may write

f(z) =
c

z − a
+ g(z)

where g(z) is holomorphic near z and c = Resa(f) (indeed c/(z − a) is just the
principal part of f at a). But now as g is holomorphic at a, it is continuous at a,
and so bounded. Let M, r > 0 be such that |g(z)| < M for all z ∈ B(a, r). Then if
0 < ε < r we have ∣∣ ∫

γε

g(z)dz
∣∣ ≤ `(γε)M = (β − α)ε.M,

which clearly tends to zero as ε→ 0. On the other hand, we have∫
γε

c

z − a
dz =

∫ β

α

c

εeit
iεeitdt =

∫ β

α

(ic)dt = ic(β − α).

Since
∫
γε
f(z)dz =

∫
γε
c/(z − a)dz +

∫
γε
g(z)dz the result follows. �

19.2. On the computation of residues and principal parts. The previous
examples will hopefully have convinced you of the power of the residue theorem.
Of course for it to be useful one needs to be able to calculate the residues of functions
with isolated singularities. In practice the integral formulas we have obtained for
the residue are often not the best way to do this. In this section we discuss a more
direct approach which is often useful when one wishes to calculate the residue of a
function which is given as the ratio of two holomorphic functions.

More precisely, suppose that we have a function F : U → C given to us as a
ratio f/g of two holomorphic functions f, g on U where g is non-constant. The
singularities of the function F are therefore poles which are located precisely at
the (isolated) zeros of the function g, so that F is meromorphic. For convenience,
we assume that we have translated the plane so as to ensure the pole of F we are
interested in is at a = 0. Let g(z) =

∑
n≥0 cnz

n be the power series for g, which

will converge to g(z) on any B(0, r) such that B̄(0, r) ⊆ U . Since g(0) = 0, and
this zero is isolated, there is a k > 0 minimal with ck 6= 0, and hence

g(z) = ckz
k(1 +

∑
n≥1

anz
n),

where an = cn+k/ck. Now if we let h(z) =
∑∞
n=1 anz

n−1 then h(z) is holomorphic
in B(0, r) – since h(z) = (g(z)− ckzk)/(ckz

k+1) – and moreover

1

g(z)
=

1

ckzk
(
1 + zh(z)

)−1
,

Now as h is continuous, it is bounded on B̄(0, r), say |h(z)| < M for all z ∈ B̄(0, r).
But then we have, for |z| ≤ δ = min{r, 1/(2M)},

1

g(z)
=

1

ckzk
( ∞∑
n=0

(−1)nznh(z)n
)
,
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where by the Weierstrass M -test, the above series converges uniformly on B̄(0, δ).
Moreover, for any n, the series

∑
m≥n(−1)mzmh(z)m is a holomorphic function

which vanishes to order at least n at z = 0, so that 1
ckzk

∑
n≥k(−1)nznh(z)n is

holmorphic. It follows that the principal part of the Laurent series of 1/g(z) is
equal to the principal part of the function

1

ckzk

k∑
n=1

(−1)k−1zkh(z)k.

Since we know the power series for h(z), this allows us to compute the principal
part of 1

g(z) as claimed. Finally, the principal part P0(F ) of F = f/g at z = 0

is just the P0(f.P0(g)), the principal part of the function f(z).P0(g), which again
is straight-forward to compute if we know the power series expansion of f(z) at 0
(indeed we only need the first k terms of it). The best way to digest this analysis
is by means of examples. We consider one next, and will examine another in the
next section on summation of series.

Example 19.10. Consider f(z) = 1/(z2 sinh(z)3). Now sinh(z) = (ez − e−z)/2
vanishes on πiZ, and these zeros are all simple since d

dz (sinh(z)) = cosh(z) has
cosh(nπi) = (−1)n 6= 0. Thus f(z) has a pole or order 5 at zero, and poles of order
3 at πin for each n ∈ Z\{0}. Let us calculate the principal part of f at z = 0
using the above technique. We will write O(zk) for the vector space of holomorphic
functions which vanish to order k at 0.

z2 sinh(z)3 = z2(z +
z3

3!
+
z5

5!
+O(z7))3 = z5(1 +

z2

3!
+
z4

5!
+O(z6))3

= z5(1 +
3z2

3!
+

3z4

(3!)2
+

3z4

5!
+O(z6))

= z5(1 +
z2

2
+

13z4

120
+O(z6))

= z5

(
1 + z

(z
2

+
13z3

120
+O(z5)

))
Thus, in the notation of the above discussion, h(z) = z

2 + 13z3

120 + O(z5), and so,
as h vanishes to first order at z = 0, in order to obtain the principal part we
just need to consider the first two terms in the geometric series (1 + zh(z))−1 =∑∞
n=0(−1)nznh(z)n:

1/z2 sinh(z)3 = z−5
(
1 + z(

z

2
+

13z3

120
+O(z5))

)−1

= z−5
(
1− z(z

2
+

13z3

120
) + z2 z2

(2!)2
+O(z5)

)
= z−5

(
1− z2

2
+ (

1

4
− 13

120
)z4 +O(z5)

)
=

1

z5
− 1

2z3
+

17

120z
+O(z).

Thus the principal part of f(z) at 0 is P0(f) = 1
z5 −

1
2z3 + 17

120z , and Res0(f) =
17/120.
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There are other variants on the above method which we could have used: For
example, by the binomial theorem for an arbitrary exponent we know that if |z| < 1
then (1 + z)−3 =

∑
n≥0

(−3
n

)
zn = 1 − 3z + 6z2 + . . .. Arguing as above, it follows

that for small enough z we have

sinh(z)−3 = z−3.(1 +
z2

3!
+
z4

5!
+O(z6))−3

= z−3

(
1 + (−3)

(z2

3!
+
z4

5!

)
+ 6
(z2

3!
+
z4

5!

)2
+O(z6)

)
= z−3

(
1− z2

2
+
(−3

5!
+

6

(3!)2

)
z4 +O(z6)

)
= z−3

(
1− z2

2
+

17z4

120
+O(z6)

)
yielding the same result for the principal part of 1/z2 sinh(z)3.

19.3. Summation of infinite series. Residue calculus can also be a useful tool
in calculating infinite sums, as we now show. For this we use the function f(z) =
cot(πz). Note that since sin(πz) vanishes precisely at the integers, f(z) is mero-
morphic with poles at each integer n ∈ Z. Moreover, since f is periodic with period
1, in order to understand the poles of f it suffices to calculate the principal part of
f at z = 0. We can use the method of the previous section to do this:

We have sin(z) = z− z3

3! + z5

5! +O(z7), so that sin(z) vanishes with multiplicity 1

at z = 0 and we may write sin(z) = z(1− zh(z)) where h(z) = z/3!− z3/5! +O(z5)
is holomorphic at z = 0. Then

1

sin(z)
=

1

z
(1− zh(z))−1 =

1

z

(
1 +

∑
n≥1

znh(z)n
)

=
1

z
+ h(z) +O(z2).

Multiplying by cos(z) we see that the principal part of cot(z) is the same as that
of 1

z cos(z) which, using the Taylor expansion of cos(z), is clearly 1
z again. By

periodicity, it follows that cot(πz) has a simple pole with residue 1/π at each
integer n ∈ Z.

We can also use this strategy44 to find further terms of the Laurent series of
cot(z): Since our h(z) actually vanishes at z = 0, the terms h(z)nzn vanish to order
2n. It follows that we obtain all the terms of the Laurent series of cot(z) at 0 up to
order 3, say, just by considering the first two terms of the series 1 +

∑
n≥1 z

nh(z)n,

that is, 1 + zh(z). Since cos(z) = 1 − z2/2! + z4/4!, it follows that cot(z) has a
Laurent series

cot(z) = (1− z2

2!
+O(z4)).

(1

z
+ (

z

3!
− z3

5!
+O(z5))

)
=

1

z
− z

3
+O(z3)

The fact that f(z) has simple poles at each integer will allow us to sum infinite
series with the help of the following:

Lemma 19.11. Let f(z) = cot(πz) and let ΓN denotes the square path with vertices
(N + 1/2)(±1 ± i). There is a constant C independent of N such that |f(z)| ≤ C
for all z ∈ Γ∗N .

44See Appendix II for more details on the generalities and justification of this method.
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Proof. We need to consider the horizontal and vertical sides of the square separately.
Note that cot(πz) = (eiπz + e−iπz)/(eiπz − e−iπz). Thus on the horizontal sides of
ΓN where z = x± (N + 1/2)i and −(N + 1/2) ≤ x ≤ (N + 1/2) we have

| cot(πz)| =
∣∣∣∣eiπ(x±(N+1/2)i) + e−iπ(x±(N+1/2)i)

eiπ(x±(N+1/2)i − e−iπ(x±(N+1/2)i)

∣∣∣∣
≤ eπ(N+1/2) + e−π(N+1/2)

eπ(N+1/2) − e−π(N+1/2)

= coth(π(N + 1/2)).

Now since coth(x) is a decreasing function for x ≥ 0 it follows that on the horizontal
sides of ΓN we have | cot(πz)| ≤ coth(3π/2).

On the vertical sides we have z = ±(N+1/2)+iy, where−N−1/2 ≤ y ≤ N+1/2.
Observing that cot(z + Nπ) = cot(z) for any integer N and that cot(z + π/2) =
− tan(z), we find that if z = ±(N + 1/2) + iy for any y ∈ R then

| cot(πz)| = | − tan(iy)| = | − tanh(y)| ≤ 1.

Thus we may set C = max{1, coth(3π/2)}. �

We now show how this can be used to sum an infinite series:

Example 19.12. Let g(z) = cot(πz)/z2. By our discussion of the poles of cot(πz)
above it follows that g(z) has simple poles with residues 1

πn2 at each non-zero integer
n and residue −π/3 at z = 0.

Consider now the integral of g(z) around the paths ΓN : By Lemma 19.11 we
know |g(z)| ≤ C/|z|2 for z ∈ Γ∗N , and for all N ≥ 1. Thus by the estimation lemma
we see that (∫

ΓN

g(z)dz

)
≤ C.(4N + 2)/(N + 1/2)2 → 0,

as N →∞. But by the residue theorem we know that∫
ΓN

g(z)dz = −π/3 +
∑
n 6=0,

−N≤n≤N

1

πn2
.

It therefore follows that
∞∑
n=1

1

n2
= π2/6

Remark 19.13. Notice that the contours ΓN and the function cot(πz) clearly allows
us to sum other infinite series in a similar way – for example if we wished to calculate
the sum of the infinite series

∑
n≥1

1
n2+1 then we would consider the integrals of

g(z) = cot(πz)/(1 + z2) over the contours ΓN .

Remark 19.14. (Non-examinable – for interest only! ): Note that taking g(z) =
(1/z2k) cot(πz) for any positive integer k, the above strategy gives a method for
computing

∑∞
n=1 1/n2k (check that you see why we need to take even powers of n).

The analysis for the case k = 1 goes through in general, we just need to compute
more and more of the Laurent series of cot(πz) the larger we take k to be.

One can show that ζ(s) =
∑∞
n=1 1/ns converges to a holomorphic function of s

for any s ∈ C with <(s) > 1 (as usual, we define ns = exp(s. log(n)) where log is
the ordinary real logarithm). As s→ 1 it can be checked that ζ(s)→∞, however
it can be shown that ζ(s) extends to a meromorphic function on all of C\{1}. The
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identity theorem shows that this extension is unique if it exists45. (This uniqueness
is known as the principle of “analytic continuation”.) The location of the zeros of
the ζ-function is the famous Riemann hypothesis: apart from the “trivial zeros” at
negative even integers, they are conjectured to all lie on the line <(z) = 1/2. Its
values at special points however are also of interest: Euler was the first to calculate
ζ(2k) for positive integers k, but the values ζ(2k+1) (for k a positive integer) remain
mysterious – it was only shown in 1978 by Roger Apéry that ζ(3) is irrational for
example. Our analysis above is sufficient to determine ζ(2k) once one succeeds in
computing explicitly the Laurent series for cot(πz) or equivalently the Taylor series
of z cot(πz) = iz + 2iz/(e2iz − 1). See Appendix IV for more details.

19.4. Keyhole contours. There are many ingenious paths which can be used to
calculate integrals via residue theory. One common contour is known (for obvious
reasons) as a keyhole contour. It is constructed from two circular paths of radius
ε and R, where we let R become arbitrarily large, and ε arbitrarily small, and we
join the two circles by line segments with a narrow neck in between. Explicitly, if
0 < ε < R are given, pick a δ > 0 small, and set η+(t) = t+ iδ, η−(t) = (R− t)− iδ,
where in each case t runs over the closed intervals with endpoints such that the
endpoints of η± lie on the circles of radius ε and R about the origin. Let γR be
the positively oriented path on the circle of radius R joining the endpoints of η+

and η− on that circle (thus traversing the “long” arc of the circle between the two
points) and similarly let γε the path on the circle of radius ε which is negatively
oriented and joins the endpoints of γ± on the circle of radius ε. Then we set
ΓR,ε = η+ ? γR ? η− ? γε (see Figure 2). The keyhole contour can sometimes be
useful to evaluate real integrals where the integrand is multi-valued as a function
on the complex plane, as the next example shows:

Example 19.15. Consider the integral
∫∞

0
x1/2

1+x2 dx. Let f(z) = z1/2/(1 + z2),

where we use the branch of the square root function which is continuous on C\R>0,
that is, if z = reit with t ∈ [0, 2π) then z1/2 = r1/2eit/2.

We use the keyhole contour ΓR,ε. On the circle of radius R, we have |f(z)| ≤
R1/2/(R2 − 1), so by the estimation lemma, this contribution to the integral of f
over ΓR,ε tends to zero as R → ∞. Similarly, |f(z)| is bounded by ε1/2/(1 − ε2)
on the circle of radius ε, thus again by the estimation lemma this contribution to
the integral of f over ΓR,ε tends to zero as ε→ 0. Finally, the discontinuity of our

branch of z1/2 on R>0 ensures that the contributions of the two line segments of

the contour do not cancel but rather both tend to
∫∞

0
x1/2

1+x2 dx as δ and ε tend to
zero.

To compute
∫∞

0
x1/2

1+x2 dx we evaluate the integral
∫

ΓR,ε
f(z)dz using the residue

theorem: The function f(z) clearly has simple poles at z = ±i, and their residues
are 1

2e
−πi/4 and 1

2e
5πi/4 respectively. It follows that∫

ΓR,ε

f(z)dz = 2πi

(
1

2
e−πi/4 +

1

2
e5πi/4

)
= π
√

2.

45It is this uniqueness and the fact that one can readily compute that ζ(−1) = −1/12 that
results in the rather outrageous formula

∑∞
n=1 n = −1/12.
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Figure 2. A keyhole contour.

Taking the limit as R→∞ and ε→ 0 we see that 2
∫∞

0
x1/2

1+x2 dx = π
√

2, so that∫ ∞
0

x1/2dx

1 + x2
=

π√
2
.

20. The argument principle

Lemma 20.1. Suppose that f : U → C is a meromorphic and has a zero of order
k or a pole of order k at z0 ∈ U . Then f ′(z)/f(z) has a simple pole at z0 with
residue k or −k respectively.

Proof. If f(z) has a zero of order k we have f(z) = (z − z0)kg(z) where g(z) is
holomorphic near z0 and g(z0) 6= 0. It follows that

f ′(z)/f(z) =
k

z − z0
+ g′(z)/g(z),

and since g(z) 6= 0 near z0 it follows g′(z)/g(z) is holomorphic near z0, so that the
result follows. The case where f has a pole at z0 is similar. �

Remark 20.2. Note that if U is an open set on which one can define a holomorphic
branch L of [Log(z)] then g(z) = L(f(z)) has g′(z) = f ′(z)/f(z). Thus integrating
f ′(z)/f(z) along a path γ will measure the change in argument around the origin
of the path f(γ(t)). The residue theorem allows us to relate this to the number of
zeros and poles of f inside γ, as the next theorem shows:

Theorem 20.3. (Argument principle): Suppose that U is an open set and f : U →
C is a meromorphic function on U . If B(a, r) ⊆ U and N is the number of ze-
ros (counted with multiplicity) and P is the number of poles (again counted with
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multiplicity) of f inside B(a, r) and f has neither on ∂B(a, r) then

N − P =

∫
γ

f ′(z)

f(z)
dz,

where γ(t) = a+ re2πit is a path with image ∂B(a, r). Moreover this is the winding
number of the path Γ = f ◦ γ about the origin.

Proof. It is easy to check that I(γ, z) is 1 if |z − a| ≤ 1 and is 0 otherwise. Since
Lemma 20.1 shows that f ′(z)/f(z) has simple poles at the zeros and poles of f with
residues the corresponding orders the result immediately from Theorem 18.17.

For the last part, note that the winding number of Γ(t) = f(γ(t)) about zero is
just ∫

f◦γ
dw/w =

∫ 1

0

1

f(γ(t))
f ′(γ(t))γ′(t)dt =

∫
γ

f ′(z)

f(z)
dz

�

The argument principle is very useful – we use it here to establish some important
results.

Theorem 20.4. (Rouché’s theorem): Suppose that f and g are holomorphic func-
tions on an open set U in C and B̄(a, r) ⊂ U . If |f(z)| > |g(z)| for all z ∈ ∂B(a, r)
then f and f + g have the same number of zeros in B(a, r) (counted with multiplic-
ities).

Proof. Let γ(t) = a+ re2πit be a parametrization of the boundary circle of B(a, r).
We need to show that (f + g)/f = 1 + g/f has the same number of zeros as poles
(Note that f(z) 6= 0 on ∂B(a, r) since |f(z)| > |g(z)|.) But by the argument
principle, this number is the winding number of h(γ(t)) about zero, where h(z) =
1 + f(z)/g(z). Since |g(z)| < |f(z)| on γ it follows that |g(z)/f(z)| < 1, so that
the image of γ∗ under 1 + g/f lies entirely in the half-plane {z : <(z) > 0}, hence
picking a branch of Log defined on this half-plane, we see that the integral∫

Γ

dz

z
= Log(f(γ(1))− Log(f(γ(0)) = 0

as required.
�

Remark 20.5. Rouche’s theorem can be useful in counting the number of zeros of a
function f – one tries to find an approximation to f whose zeros are easier to count
and then by Rouche’s theorem obtain information about the zeros of f .

Example 20.6. Suppose that P (z) = z4 + 5z + 2. Then on the circle |z| = 2 we
have |z|4 = 16 > 5.2 + 2 ≥ |5z + 2| so that if g(z) = 5z + 2 we see that P − g = z4

and P have the same number of roots B(0, 2). It follows by Rouche’s theorem that
the four roots of P (z) all have modulus less than 2. On the other hand, if we take
|z| = 1, then |5z + 2| ≥ 5− 2 = 3 > |z4| = 1, hence P (z) and 5z + 2 have the same
number of roots in B(0, 1). It follows P (z) has one root of modulus less than 1 and
3 of modulus between 1 and 2.

Theorem 20.7. (Open mapping theorem): Suppose that f : U → C is holomorphic
and non-constant on a region U . Then for any open set V ⊂ U the set f(V ) is also
open.
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Proof. Suppose that w0 ∈ f(V ), say f(z0) = w0. Then g(z) = f(z) − w0 has
a zero at z0 which, since f is nonconstant, is isolated. Thus we may find an
r > 0 such that g(z) 6= 0 on B̄(z0, r) ⊂ U and in particular since ∂B(z0, r) is
compact, we have |g(z)| ≥ δ > 0 on ∂B(z0, r). But then if |w − w0| < δ it
follows |w − w0| < |g(z)| on ∂B(z0, r), hence by the argument principle g(z) and
h(z) = g(z) + (w0 − w) = f(z) − w also has a zero in B(z0, r), that is, f(z) takes
the value w in B(z0, r). Thus B(w0, δ) ⊆ f(B(z0, r)) and hence f(U) is open as
required. �

Remark 20.8. Note that the proof actually establishes a bit more than the statement
of the theorem: if w0 = f(z0) then the multiplicity d of the zero of the function
f(z) − w0 at z0 is called the degree of f at z0. The proof shows that locally
the function f is d-to-1, counting multiplicities, that is, there are r, ε ∈ R>0 such
that for every w ∈ B(w0, ε) the equation f(z) = w has d solutions counted with
multiplicity in the disk B(z0, r).

Theorem 20.9. (Inverse function theorem): Suppose that f : U → C is injective
and holomorphic and that f ′(z) 6= 0 for all z ∈ U . If g : f(U) → U is the inverse
of f , then g is holomorphic with g′(w) = 1/f ′(g(w)).

Proof. By the open mapping theorem, the function g is continuous, indeed if V
is open in f(U) then g−1(V ) = f(V ) is open by that theorem. To see that g is
holomorphic, fix w0 ∈ f(U) and let z0 = g(w0). Note that since g and f are
continuous, if w → w0 then f(w)→ z0. Writing z = f(w) we have

lim
w→w0

g(w)− g(w0)

w − w0
= lim
z→z0

z − z0

f(z)− f(z0)
= 1/f ′(z0)

as required. �

Remark 20.10. Note that the non-trivial part of the proof of the above theorem is
the fact that g is continuous! In fact the condition that f ′(z) 6= 0 follows from the
fact that f is bijective – this can be seen using the degree of f : if f ′(z0) = 0 and
f is nonconstant, we must have f(z)− f(z0) = (z − z0)kg(z) where g(z0) 6= 0 and
k ≥ 1. Since we can chose a holomorphic branch of g1/k near z0 it follows that f(z)
is locally k-to-1 near z0, which contradicts the injectivity of f . For details see the
Appendices. Notice that this is in contrast with the case of a single real variable,
as the example f(x) = x3 shows. Once again, complex analysis is “nicer” than real
analysis!

21. The extended complex plane

When studying isolated singularities of a holomorphic function f , we observed
that f has a pole at a point z0 if and only if f(z)→∞ as z → z0. This motivates
the idea of extending the complex plane by adding a point ∞ “at infinity”. In
this section we want to develop this idea more fully and show that we can make
sense of the notion of continuous and holomorphic functions on the extended plane
C ∪ {∞} = C∞. We use two different approaches:

(1) Real geometry: The stereographic projection map will allow us to identify
the plane C = R2 with the complement of the point (0, 0, 1) in the 2-sphere
S2 = {x ∈ R3 : ‖x‖2 = 1}, so that the “north pole” N = (0, 0, 1) becomes
the point at infinity.
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(2) Complex geometry: The set of lines P1 in C2, that is, one-dimensional
subspaces of C2 contains a copy of C where z ∈ C is identified with the line
through the vector (z, 1). Every line but that through (1, 0) is obtained in
this way, so again we obtain C∞ by identifying ∞ with the line C.(1, 0).

21.1. Stereographic projection. Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be
the unit sphere of radius 1 centred at the origin in R3, and view the complex plane
as the copy of R2 inside R3 given by the plane {(x, y, 0) ∈ R3 : x, y ∈ R}. Let N
be the “north pole” N = (0, 0, 1) of the sphere S2. Given a point z ∈ C, there is
a unique line passing through N and z, which intersects S\{N} in a point S(z).
This map gives a bijection between C and S\{N}. Indeed, explicitly, if (X,Y, Z) ∈
S\{N} then it corresponds to46 z ∈ C where z = x + iy with x = X/(1 − Z) and
y = Y/(1− Z). Correspondingly, given z = x+ iy ∈ C we have
(21.1)

S(z) =
( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
=

1

1 + |z|2
(
2<(z), 2=(z), |z|2 − 1

)
.

Thus if we set S(∞) = N , then we get a bijection between C∞ and S2, and we use
this identification to make C∞ into a metric space (and thus we obtain a notion
of continuity for C∞): As a subset of R3 equipped with the Euclidean metric S2 is
naturally a metric space.

Lemma 21.1. The metric induced on C∞ by S is given by

d(z, w) =
2|z − w|√

1 + |z|2
√

1 + |w|2
d(z,∞) =

2√
1 + |z|2

.

for any z, w ∈ C.

Proof. First consider the case where z, w ∈ C. Since S(z), S(w) ∈ S2 we see that
‖S(z)− S(w)‖2 = 2− 2S(z).S(w). But using (21.1) we see that

S(z).S(w) =
2(zw̄ + z̄w) + (|z|2 − 1)(|w|2 − 1)

(1 + |z|2)(1 + |w|2)

=
2(zw̄ + z̄w) + zz̄ww̄ − zz̄ − ww̄ + 1

(1 + |z|2)(1 + |w|2)

= 1− 2|z − w|2

(1 + |z|2)(1 + |w|2)

so that

d2(S(z), S(w))2 =
4|z − w|2

(1 + |z|2)(1 + |w|2)

as required. The case where one or both of z, w is equal to ∞ is similar but
easier. �

Remark 21.2. Note that in particular, S(z) tends to N = (0, 0, 1) if and only if
|z| → ∞, thus our notation z →∞ now takes on a literal meaning, consistent with
its previous definition. In particular, meromorphic functions on an open subset U
of C naturally extend to continuous functions from U to C∞.
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Figure 3. The stereographic projection map.

The geometry of the sphere nicely unites lines and circles in the plane as the
following Lemma shows:

Lemma 21.3. The map S : C → S induces a bijection between lines in C and
circles in S which contain N , and a bijection between circles in C and circles in S
not containing N .

Proof. A circle in S is given by the intersection of S with a plane H. Any plane H
in R3 is given by an equation of the form aX + bY + cZ = d, and H intersects S
provided a2 + b2 + c2 > d2. Indeed to see this note that H intersects the sphere in a
circle if and only if its distance to the origin is less than 1. Since the closest vector
to the origin on H is perpendicular to the plane it is a scalar multiple of (a, b, c),
so it must be d

a2+b2+c2 (a, b, c), hence H is at distance d2/(a2 + b2 + c2) from the
origin and the result follows. Moreover, clearly H contains N if and only if c = d.

Now from the explicit formulas for S we see that if z = x+ iy then S(z) lies on
this plane if and only if

2ax+ 2by + c(x2 + y2 − 1) = d(x2 + y2 + 1)

⇐⇒ (c− d)(x2 + y2) + 2ax+ 2by − (c+ d) = 0

Clearly if c = d this is the equation of a line, while conversely if c 6= d it is the
equation of a circle in the plane. Indeed if c 6= d, we can normalize and insist that

46Any point on the line between N and (X,Y, Z) can be written as t(0, 0, 1) + (1− t)(X,Y, Z)
for some t ∈ R. It is then easy to calculate where this line intersects the plane given by the

equation z = 0.
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c− d = 1, whence our equation becomes

(21.2) (x+ a)2 + (y + b)2 = (a2 + b2 + c+ d)

that is, the circle with centre (−a,−b) and radius
√
a2 + b2 + c+ d. Note that the

condition the plane intersected S becomes the condition that a2 + b2 + c + d > 0,
that is, exactly the condition that Equation (21.2) has a non-empty solution set.

To complete the proof, we need to show that all circles and lines in C are given
by the form of the above equation. When c = d we get 2(ax + by − c) = 0, and
clearly the equation of every line can be put into this form. When c 6= d as before
assume c−d = 1, then letting a, b, c+d vary freely we see that we can obtain circle
in the plane as required. �

21.2. The projective line. Our second approach to the extended complex plane
is via the projective line P1: this is, as a set, simply the collection of one-dimensional
subspaces of C2. If e1, e2 denote the standard basis of C2 then we have two natural
subsets of P1, each naturally in bijection with C. If we set U0 = P1\C.e1 and
U1 = P1\Ce2, then we have maps i0, i∞ : C→ P1 given by i0(z) = C.(ze1 + e2) and
i∞(z) = C.(e1 + ze2) whose images are U0 and U1 respectively. Given a nonzero
vector (z, w) ∈ C2 we will write [z, w] ∈ P1 for the line it spans. (The numbers z, w
are often called the homogeneous coordinates of [z, w]. They are only defined up to
simultaneous rescaling.)

Thus P1 is covered by two pieces U0 and U∞ whose union is all of P1. We can
use this to make P1 a topological space: we say that V is an open subset of P1

if and only if V ∩ U0 and V ∩ U∞ are identified with open subsets of C via the
bijections i0 and i1 respectively. It is a good exercise to check that this does indeed
define a topology on P1 (in which both U0 and U∞ are open, since C and C\{0}
are open in C. We however will take a more direct approach: Note that we can
identify P1 with C∞ using the map i0 : C → P1 extending it to C∞ by sending ∞
to Ce1 and we can thus transport the metric on C∞ (which of course we obtained
in turn from our identification on C∞ with S2) to that on P1. Perhaps surprisingly,
this metric has a natural expression in terms of the Hermitian form 〈·, ·〉 on C2 as
the next Lemma shows:

Lemma 21.4. The metric induced on P1 by its identification with C∞ is given by

d(L1, L2) = 2

√
1− |〈v, w〉|

2

‖v‖2‖w‖2

where v ∈ L1\{0} and w ∈ L2\{0}.

Proof. Suppose L1 = [z, 1] and L2 = [w, 1]. Then the formula in the statement of
the Lemma gives

d(L1, L2) = 2

√
1− |zw̄ + 1|2

(1 + |z|2)(1 + |w2)

= 2

√
1 + |z|2 + |w|2 + |z|2|w|2 − |z|2|w|2 − zw̄ − z̄w − 1

(1 + |z|2)(1 + |w|2)

= 2

√
|z − w|2

(1 + |z|2)(1 + |w|2
=

2|z − w|√
1 + |z|2

√
1 + |w|2
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The case when L2 =∞ = Ce1 is similar but easier. �

One advantage of thinking of C∞ as the projective line is that we can use the
charts U0 and U∞ to define what it means for a function f on C∞ to be holomorphic:

Definition 21.5. Suppose that f : W → P1 is a continuous function on an open
subset W of P1, and let L ∈ V . Suppose that L ∈ Up and f(L) ∈ Uq where
p, q ∈ {0,∞}. Then f−1(Ul) ∩ Uk is an open set in P1, which via ik (or rather its
inverse) we can identify with an open subset V of C, and its image under f lies
in Uq which we can identify with C via i−1

q . Thus f yields a continuous function

f̃ : V → C, where f̃ = i−1
q ◦f◦ip and we say f is holomorphic at L if f̃ is holomorphic

at ip(z) = L.
Since most points in P1 lie in both U0 and U∞ the above definition seems am-

biguous. In fact, where there is a choice, it does not matter what which of U0 or
U∞ you pick. This is because i−1

0 ◦ i∞(z) = i−1
∞ ◦ i0(z) = 1/z for all z ∈ C\{0} and

the function 1/z is holomorphic with holomorphic inverse (itself!) on C\{0}. This
fact and the chain rule combine to show that the definition is independent of any
choices. The essential point is that if f(z) is holomorphic, so are f(1/z), 1/f(z)
and 1/f(1/z) wherever they are defined.

Example 21.6. Suppose that U is an open subset of C and f : U → P1 is holomor-
phic and suppose z0 ∈ U is such that f(z0) =∞. Then by continuity f(z) 6= 0 near
z0, so we can take Uq = U∞ and Up = U0. Then if we write f([z : 1]) = [1 : f∞(z)],
it follows i−1

∞ ◦ f ◦ i0(z) = f∞(z), and we simpy require f∞(z) to be holomorphic at
z = z0 (with value 0 at z = z0). This in particular means that, if f is non-constant,
f∞(z0) = 0 is an isolated zero of f∞, so that close to z0 we have f∞(z) 6= 0, and
hence f(z) ∈ U0. For such points we may write f([z : 1]) = [f0(z) : 1]. Since
[f0(z) : 1] = f([z : 1]) = [1 : f∞(z)] we see f0(z) = 1/f∞(z), hence the condition f
is holomorphic at z0 is exactly our defintion that f have a pole at z0.

You can check using this definition that a holomorphic function f : C → P1

are precisely the meromorphic functions, and with a bit more work show that the
holomorphic functions f which are defined on all of P1 are exactly the set of rational
functions.

We end this section by noting an illuminating connection between the extended
complex plane and the notion of a simply connected domain in the plane.

Theorem 21.7. A domain D in C is simply-connected if and only if C∞\D is
connected.

Proof. We can only sketch a proof of one direction of the theorem. Suppose that
C∞\D is connected, and let γ be a closed path in D. Recall that C\γ∗ has exactly
one unbounded component, C say, and for z ∈ C we have I(γ, z) = 0. In terms
of the Riemann sphere, this is simply the component of C∞\γ∗ which contains ∞.
Now C∞\D ⊂ C∞\γ∗ and since by assumption it is connected and contains ∞,
we have C∞\D ⊂ C. Thus I(γ, z) = 0 for all z ∈ C\D, so that the inside of γ
lies entirely in D. But then Theorem 18.11 and Theorem 14.21 show that D is a
primitive domain, and hence, as discussed before, is simply-connected. �
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22. Conformal transformations

Another important feature of the stereographic projection map is that it is con-
formal, meaning that it preserves angles. The following definition helps us to for-
malize what this means:

Definition 22.1. If γ : [−1, 1]→ C is a C1 path which has γ′(t) 6= 0 for all t, then
we say that the line {γ(t) + sγ′(t) : s ∈ R} is the tangent line to γ at γ(t), and the
vector γ′(t) is a tangent vector at γ(t) ∈ C.

Remark 22.2. Note that this definition gives us a notion of tangent vectors at
points on subsets of Rn, since the notion of a C1 path extends readily to paths in
Rn (we just require all n component functions are continuously differentiable). In
particular, if S is the unit sphere in R3 as above, a C1 path on S is simply a path
γ : [a, b] → R3 whose image lies in S. It is easy to check that the tangent vectors
at a point p ∈ S all lie in the plane perpendicular to p – simply differentiate the
identity f(γ(t)) = 1 where f(x, y, z) = x2 + y2 + z2 using the chain rule.

We can now state what we mean by a conformal map:

Definition 22.3. Let U be an open subset of C and suppose that T : U → C (or
S) is continuously differentiable in the real sense (so all its partial derivatives exist
and are continuous). If γ1, γ2 : [−1, 1] → U are two paths with z0 = γ1(0) = γ2(0)
then γ′1(0) and γ′2(0) are two tangent vectors at z0, and we may consider the angle
between them (formally speaking this is the difference of their arguments). By our
assumption on T , the compositions T ◦ γ1 and T ◦ γ2 are C1-paths through T (z0),
thus we obtain a pair of tangent vectors at T (z0). We say that T is conformal at
z0 if for every pair of C1 paths γ1, γ2 through z0, the angle between their tangent
vectors at z0 is equal to the angle between the tangent vectors at T (z0) given by
the C1 paths T ◦ γ1 and T ◦ γ2. We say that T is conformal on U if it is conformal
at every z ∈ U .

One of the main reasons we focus on conformal maps here is because holomorphic
functions give us a way of producing many examples of them, as the following result
shows.

Proposition 22.4. Let f : U → C be a holomorphic map and let z0 ∈ U be such
that f ′(z0) 6= 0. Then f is conformal at z0. In particular, if f : U → C is has
nonvanishing derivative on all of U , it is conformal on all of U (and locally a
biholomorphism).

Proof. We need to show that f preserves angles at z0. Let γ1 and γ2 be C1-
paths with γ1(0) = γ2(0) = z0. Then we obtain paths η1, η2 through f(z0) where
η1(t) = f(γ1(t)) and η2(t) = f(γ2(t)). By the Chain Rule (see Lemma 23.7) we see
that η′1(t) = Dfz0(γ′1(t)) and η′2(t) = Dfz0(γ′2(t)), and moreover if f ′(z0) = ρ.eiθ,
then

Dfz0 = ρ.

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
,

(since the linear map given by multiplication by f ′(z0) is precisely scaling by ρ and
rotating by θ). It follows that if φ1 and φ2 are the arguments of γ′1(0) and γ′2(0),
then the arguments of η′1(0) and η′2(0) are φ1 + θ and φ2 + θ respectively. It follows
that the difference between the two pairs of arguments, that is, the angles between
the curves at z0 and f(z0), are the same.
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For the final part, note that if f ′(z0) 6= 0 then by the definition of the degree of
vanishing, the function f(z) is locally biholomorphic (see the proof of the inverse
function theorem). �

Example 22.5. The function f(z) = z2 has f ′(z) nonzero everywhere except the
origin. It follows f is a conformal map from C× to itself. Note that the condition
that f ′(z) is non-zero is necessary – if we consider the function f(z) = z2 at z = 0,
f ′(z) = 2z which vanishes precisely at z = 0, and it is easy to check that at the
origin f in fact doubles the angles between tangent vectors.

Lemma 22.6. The sterographic projection map S : C→ S is conformal.

Proof. Let z0 be a point in C, and suppose that γ1(t) = z0 +tv1 and γ2(t) = z0 +tv2

are two paths47 having tangents v1 and v2 at z0 = γ1(0) = γ2(0). Then the lines
L1 and L2 they describe, together with the point N , determine planes H1 and H2

in R3, and moreover the image of the lines under stereographic projection is the
intersection of these planes with S. Since the intersection of S with any plane is
either empty or a circle, it follows that the paths γ1 and γ2 get sent to two circles
C1 and C2 passing through P = S(z0) and N . Now by symmetry, these circles meet
at the same angle at N as they do at P . Now the tangent lines of C1 and C2 at N
are just the intersections of H1 and H2 with the plane tangent to S at N . But this
means the angle between them will be the same as that between the intersection
of H1 and H2 with the complex plane, since it is parallel to the tangent plane of S
at N . Thus the angles between C1 and C2 at P and L1 and L2 at z0 coincide as
required. �

22.1. Mobius transformations. Recall that we have identified C∞ with the pro-
jective line P1. The general linear group GL2(C) acts on C2 in the natural way, and
this induces an action on the set of lines in C. We thus get an action of GL2(C) on
P1, and so on the extended complex plane. Explicitly, if v = (z1, z2)t spans a line
L = C.v then if g ∈ GL2(C) is given by a matrix

g =

(
a b
c d

)
we see that

g(L) = C.g(v) = C
(
az1 + bz2

cz1 + dz2

)
.

In particular, using our embedding i0 : C→ P1 we see that

g(i0(z)) = C.g
(
z
1

)
= C.

(
az + b
cz + d

)
= C.

(
az+b
cz+d

1

)
= i0(

az + b

cz + d
).

Note that f(−d/c) =∞ and f(∞) = a/c, as is easily checked using the fact that
∞ = [1 : 0] ∈ P1.

Definition 22.7. The induced maps z 7→ az+b
cz+d from the extended complex plane

to itself are known as Mobius maps or Mobius transformations. Since they come
from the action of GL2(C) on P1 they automatically form a group. Note this means
that every Mobius transformation is a bijection of the extended complex plane to
itself, and moreover its inverse is also a Mobius transformation. In particular,

47with domain [−1, 1] say – or even the whole real line, except that it is non-compact.
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since rational functions on C yield holomorphic functions on C∞, every Mobius
transformation gives an invertible holomorphic function on C∞.

Mob = {f(z) =
az + b

cz + d
: ad− bc 6= 0}.

Note that if we rescale a, b, c, d by the same (nonzero) scalar, then we get the same
transformation. In group theoretic terms, the map from GL2(C) to Mob has a
kernel, the scalar matrices, thus Mob is a quotient group of GL2(C). As a quotient
group it is usually denoted PGL2(C) the projective general linear group.

Any Mobius transformation can be understood as a composition of a small col-
lection of simpler transformations, as we will now show. This can be useful because
it allows us to prove certain results about all Mobius transformations by checking
them for the simple transformations.

Definition 22.8. A transformation of the form z 7→ az where a 6= 0 is called
a dilation. A transformation of the form z 7→ z + b is called a translation. The
transformation z 7→ 1/z is called inversion. Note that these are all Mobius trans-
formations, and the inverse of a dilation is a dilation, the inverse of a translation
is a translation, while inversion is an involution and so is its own inverse.

Lemma 22.9. Any Mobius transformation can be written as a composition of
dilations, translations and an inversion.

Proof. Let G denote the set of all Mobius transformations which can be obtained
as compositions of dilations, translations and inversions. The set G is a subgroup
of Mob. We wish to show it is the full group of Mobius transformations.

First note that any transformation of the form z 7→ az + b is a composition of
the dilation z 7→ az and the translation z 7→ z + b. Moreover, if f(z) = az+b

cz+d is a

Mobius transformation and c = 0 then f(z) = (a/d)z + (b/d) (note if c = 0 then
ad− bc 6= 0 implies d 6= 0) and so is a composition of a dilation and a translation.
If c 6= 0 then we have

(22.1)
az + b

cz + d
=

(a/c)(cz + d) + (b− da/c)
cz + d

=
a

c
+ (b− d/a)

1

cz + d
.

Now z 7→ 1
cz+d is the composition of an inversion with the map z 7→ cz + d, and

so lies in G. But then by equation (22.1) we have f(z) is a composition of this
map with a dilation and a translation, and so f lies in G. Since f was an arbitrary
transformation with c 6= 0 it follows G = Mob as required. �

Remark 22.10. The subgroup of Mob generated by translations and dilations is the
group of C-linear affine transformations Aff(C) = {f(z) = az + b : a 6= 0} of the
complex plane. It is the stablizer of ∞ in Mob.

Remark 22.11. One should compare the statement of the previous Lemma with the
theory or reduced row echelon form in Linear Algebra: any invertible 2× 2 matrix
will have the identity matrix as its reduced row echelon form, and the elementary
row operations correspond essentially to the simple transformations which generate
the Mobius group. This can be used to give an alternative proof of the Lemma.

As an example of how we can use this result to study Mobius transformations,
we prove the following:
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Lemma 22.12. Let f : C∞ → C∞ be a Mobius transformation. Then f takes
circles to circles. (Here we view C∞ as S2 so that by Lemma 21.3 a circle in C∞
is a line or a circle in C).

Proof. Since a line in C is given by the equation =(az) = s where s ∈ R and |a| = 1,
while a circle is given by the equation |z − a| = r for a ∈ C, r ∈ R>0, it is easy
to check that any dilation or translation takes a line to a line and a circle to a
circle. On the other hand, we have seen that any circle can be described as the
locus C = {z : |z − a| = k|z − b|} where a, b ∈ C and k ∈ (0, 1) and moreover we
can assume a, b 6= 0 (see the remark after Lemma 11.4). But if z ∈ C and w = 1/z
we have

|1/w−a| = k|1/w−b| ⇐⇒ |w−1/a||a| = k|b||w−1/b| ⇐⇒ |w−1/a| = k|b|
|a|
|w−1/a|,

thus we see that the image of C under inversion is the locus of points w which

satisfy the equation |w − 1/a| = k|b|
|a| |w − 1/b|, which is therefore a line or a circle

as required. �

Although it follows easily from what we have already done, it is worth high-
lighting the following:

Lemma 22.13. Mobius transformations are conformal.

Proof. As we have already shown, any holomorphic map is conformal wherever its
derivative is nonzero. Since a Mobius transformation f is invertible everywhere
with holomorphic inverse, its derivative must be nonzero everywhere and we are
done.

One can also give a more explicit proof: If f(z) = az+b
cz+d then it is easy to check

that

f ′(z) =
ad− bc

(cz + d)2
6= 0,

for all z 6= −d/c, thus f is conformal at each z ∈ C\{−d/c}. Checking at z =
∞,−d/c is similar: indeed at ∞ = [1 : 0] we use the map i∞ : C → P1 given by
w 7→ [1 : w] to obtain f∞(w) = a+bw

c+dw and f ′∞(w) = bc−ad
(c+dw)2 , which is certainly

nonzero at w = 0 (and i∞(0) =∞). �

Since a Mobius map is given by the four entries of a 2× 2 matrix, up to simul-
taneus rescaling, the following result is perhaps not too surprising.

Proposition 22.14. If z1, z2, z3 and w1, w2, w3 are triples of pairwise distinct com-
plex numbers, then there is a unique Mobius transformation f such that f(zi) = wi
for each i = 1, 2, 3.

Proof. It is enough to show that, given any triple (z1, z2, z3) of complex numbers,
we can find a Mobius transformations which takes z1, z2, z3 to 0, 1,∞ respectively.
Indeed if f1 is such a transformation, and f2 takes 0, 1,∞ to w1, w2, w3 respectively,
then clearly f2 ◦ f−1

1 is a Mobius transformation which takes zi to wi for each i.
Now consider

f(z) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

It is easy to check that f(z1) = 0, f(z2) = 1, f(z3) =∞, and clearly f is a Mobius
transformation as required. If any of z1, z2 or z3 is ∞, then one can find a similar
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transformation (for example by letting zi → ∞ in the above formula). Indeed if
z1 = ∞ then we set f(z) = z2−z3

z−z3 ; if z2 = ∞, we take f(z) = z−z1
z−z3 ; and finally if

z3 =∞ take f(z) = z−z1
z2−z1 .

To see the f is unique, suppose f1 and f2 both took z1, z2, z3 to w1, w2, w3. Then
taking Mobius transformations g, h sending z1, z2, z3 and w1, w2, w3 to 0, 1,∞ the
transformations hf1g

−1 and hf2g
−1 both take (0, 1,∞) to (0, 1,∞). But suppose

T (z) = az+b
cz+d is any Mobius transformation with T (0) = 0, T (1) = 1 and T (∞) =∞.

Since T fixes∞ it follows c = 0. Since T (0) = 0 it follows that b/d = 0 hence b = 0,
thus T (z) = a/d.z, and since T (1) = 1 it follows a/d = 1 and hence T (z) = z.
Thus we see that hf1g

−1 = hf2g
−1 = id are all the identity, and so f1 = f2 as

required. �

Example 22.15. The above lemma shows that we can use Mobius transformations
as a source of conformal maps. For example, suppose we wish to find a conformal
transformation which takes the upper half plane H = {z ∈ C : =(z) > 0} to
the unit disk B(0, 1). The boundary of H is the real line, and we know Mobius
transformations take lines to lines or circles, and in the latter case this means the
point ∞ ∈ C∞ is sent to a finite complex number. Now any circle is uniquely
determined by three points lying on it, and we know Mobius transformations allow
us to take any three points to any other three points. Thus if we take f the Mobius
map which sends 0 7→ −i, and 1 7→ 1, ∞ 7→ i the real axis will be sent to the unit
circle. Now we have

f(z) =
iz + 1

z + i
(one can find f in a similar fashion to the proof of Proposition 22.14).

So far, we have found a Mobius transformation which takes the real line to the
unit circle. Since C\R has two connected components, the upper and lower half
planes, H and iH, and similarly C\S1 has two connected components, B(0, 1) and
C\B̄(0, 1). Since a Mobius transformation is continuous, it maps connected sets to
connected sets, thus to check whether f(H) = B(0, 1) it is enough to know which
component of C\S1 a single point in H is sent to. But f(i) = 0 ∈ B(0, 1), so we
must have f(H) = B(0, 1) as required.

Note that if we had taken g(z) = (z+ i)/(iz+1) for example, then g also maps R
to the unit circle S1, but g(−i) = 0, so48 g maps the lower half plane to B(0, 1). If
we had used this transformation, then it would be easy to “correct” it to get what
we wanted: In fact there are (at least) two simple things one could do: First, one
could note that the map R(z) = −z (a rotation by π) sends the upper half plane
to the lower half place, so that the composition g ◦ R is a Mobius transformation
taking H to B(0, 1). Alternatively, the inversion j(z) = 1/z sends C\B̄(0, 1) to
B(0, 1), so that j ◦ g also sends H to B(0, 1). Explicitly, we have

g ◦R(z) =
z − i
iz − 1

=
−i(iz + 1)

i(z + i)
= −f(z), j ◦ g(z) =

iz + 1

z + i
= f(z).

Note in particular that f is far from unique – indeed if f is any Mobius transforma-
tion which takes H to B(0, 1) then composing it with any Mobius transformation

48A Mobius map is a continuous function on C∞, and if we remove a circle from C∞ the

complement is a disjoint union of two connected components, just the same as when we remove
a line or a circle from the plane, thus the connectedness argument works just as well when we

include the point at infinity.
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which preserves B(0, 1) will give another such map. Thus for example eiθ.f will be
another such transformation.

Exercise 22.16. Every Mobius transformation gives a biholomorphic map from
C∞ to itself, but they may not preserve the distance function dS on P1. What is the
subgroup of Mob which are isometries of P1 with respect to the distance function
dS?

Given two domains D1, D2 in the complex plane, one can ask if there is a confor-
mal transformation f : D1 → D2. Since a conformal transformation is in particular
a homeomorphism, this is clearly not possible for completely arbitrary domains.
However if we restrict to simply-connected domains (that is, domains in which any
path can be continuously deformed to any other path with the same end-points),
the following remarkable theorem shows that the answer to this question is yes!
Since it will play a distinguished role later, we will write D for the unit disc B(0, 1).

Theorem 22.17. (Riemann’s mapping theorem): Let U be an open connected and
simply-connected proper subset of C. Then there if z0 ∈ U there is a unique bijective
conformal transformation f : U → D such that f(z0) = 0, f ′(z0) > 0.

Remark 22.18. The proof of this theorem is beyond the scope of this course, but
it is a beautiful and fundamental result. The proof in fact only uses the fact
that on a simply-connected domain any holomorphic function has a primitive, and
hence it in fact shows that such domains are simply-connected in the topological
sense (since a conformal transformation is in particular a homeomorphism, and
the disc in simply-connected). It relies crucially on Montel’s theorem on families
of holomorphic functions, see for example the text of Shakarchi and Stein for an
exposition of the argument.

Note that it follows immediately from Liouville’s theorem that there can be no
bijective conformal transformation taking C to B(0, 1), so the whole complex plane
is indeed an exception. The uniqueness statement of the theorem reduces to the
question of understanding the conformal transformations of the disk D to itself.

Of course knowing that a conformal transformation between two domains D1

and D2 exists still leaves the challenge of constructing one. As we will see in the
next section on harmonic maps, this is an important question. In simple cases one
can often do so by hand, as we now show.

In addition to Mobius transformations, it is often useful to use the exponential
function and branches of the multifunction [zα] (away from the origin) when con-
structing conformal maps. We give an example of the kind of constructions one can
do:

Example 22.19. Let D1 = B(0, 1) and D2 = {z ∈ C : |z| < 1,=(z) > 0}. Since
these domains are both convex, they are simply-connected, so Riemann’s mapping
theorem ensure that there is a conformal map sending D2 to D1. To construct such
a map, note that the domain is defined by the two curves γ(0, 1) and the real axis.
It can be convenient to map the two points of intersection of these curves, ±1 to 0
and ∞. We can readily do this with a Mobius transformation:

f(z) =
z − 1

z + 1
,

Now since f is a Mobius transformation, it follows that f1(R) and f1(γ(0, 1)) are
lines (since they contain ∞) passing through the origin. Indeed f(R) = R, and
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since f had inverse f−1 = z+1
z−1 it follows that the image of γ(0, 1) is {w ∈ C :

|w − 1| = |w + 1|}, that is, the imaginary axis. Since f(i/2) = (−3 + 4i)/5 it
follows by connectedness that f(D1) is the second quadrant Q = {w ∈ C : <(z) <
0,=(z) > 0}.

Now the squaring map s : C → C given by z 7→ z2 maps Q bijectively to the
half-plane H = {w ∈ C : =(w) < 0}, and is conformal except at z = 0 (which is on
the boundary, not in the interior, of Q). We may then use a Mobius map to take
this half-plane to the unit disc: indeed in Example 22.15 we have already seen that
the Mobius transformation g(z) = z+i

iz+1 takes the lower-half plane to the upper-half
plane.

Putting everything together, we see that F = g ◦ s ◦ f is a conformal transfor-
mation taking D1 to D2 as required. Calculating explicitly we find that

F (z) = i

(
z2 + 2iz + 1

z2 − 2iz + 1

)
Remark 22.20. Note that there are couple of general principles one should keep in
mind when constructing conformal transformations between two domains D1 and
D2. Often if the boundary of D1 has distinguished points (such as ±1 in the above
example) it is convenient to move these to “standard” points such as 0 and∞, which
one can do with a Mobius transformation. The fact that Mobius transformations
are three-transitive and takes lines and circles to lines and circles and moreover
act transitively on such means that we can always use Mobius transformations to
match up those parts of the boundary of D1 and D2 given by line segments or
arcs of circles. However these will not be sufficient in general: indeed in the above
example, the fact that the boundary of D1 is a union of a semicircle and a line
segment, while that of D2 is just a circle implies there is no Mobius transformation
taking D1 to D2, as it would have to take ∂D1 to ∂D2, which would mean that
its inverse would not take the unit circle to either a line or a circle. Branches of
fractional power maps [zα] are often useful as they allow us to change the angle at
the points of intersection of arcs of the boundary (being conformal on the interior
of the domain but not on its boundary).

22.2. Conformal transformations and the Laplace equation. In this section
we will use the term conformal map or conformal transformation somewhat abu-
sively to mean a holomorphic function whose derivative is nowhere vanishing on
its domain of definition. (We have seen already that this implies the function is
conformal in the sense of the previous section.) If there is a bijective conformal
transformation between two domains U and V we say they are conformally equiv-
alent.

Recall that a function v : R2 → R is said to be harmonic if it is twice differen-
tiable and ∂2

xv + ∂2
yv = 0. Often one seeks to find solutions to this equation on a

domain U ⊂ R2 where we specify the values of v on the boundary ∂U of U . This
problem is known as the Dirichlet problem, and makes sense in any dimension (us-
ing the appropriate Laplacian). In dimension 2, complex analysis and in particular
conformal maps are a powerful tool by which one can study this problem, as the
following lemma show.
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Lemma 22.21. Suppose that U ⊂ C is a simply-connected open subset of C and
v : U → R is twice continuously differentiable and harmonic. Then there is a holo-
morphic function f : U → C such that <(f) = v. In particular, if v is harmonic
and twice continuously differentiable then it is analytic.

Proof. (Sketch): Consider the function g(z) = ∂xv − i∂yv. Then since v is twice
continuously differentiable, the partial derivatives of g are continuous and

∂2
xv = −∂2

yv; ∂y∂xv = ∂x∂yv,

so that g satisfies the Cauchy-Riemann equations. It follows from Theorem 12.11
that g is holomorphic. Now since U is simply-connected, it follows that g has
a primitive G : U → C. But then it follows that if G = a(z) + ib(z) we have
∂zG = ∂xa − i∂ya = g(z) = ∂xv − i∂yv, hence the partial derivatives of a and v
agree on all of U . But then if z0, z ∈ U and γ is a path between then, the chain
rule49 shows that∫

γ

(∂xv + i∂yv)dz =

∫ 1

0

(∂x(v(γ(t)) + i∂yv(γ(t)))γ′(t)dt

=

∫ 1

0

d

dt
(v(γ(t)))dt = v(z)− v(z0),

Similarly, we see that the same path integral is also equal to a(z)−a(z0). It follows
that a(z) = v(z) + (a(z0)− v(z0)), thus if we set f(z) = G(z)− (G(z0)− v(z0)) we
obtain a holomorphic function on U whose real part is equal to v as required.

Since we know that any holomorphic function is analytic, it follows that v is
analytic (and in particular, infinitely differentiable). �

The previous Lemma shows that, at least locally (in a disk say) harmonic func-
tions and holomorphic functions are in correspondence – given a holomorphic func-
tion f we obtain a harmonic function by taking its real part, while if u is harmonic
the previous lemma shows we can associate to it a holomorphic function f whose
real part equals u (and in fact examining the proof, we see that f is actually unique
up to a purely imaginary constant). Thus if we are seeking a harmonic function on
an open set U whose values are a given function g on ∂U , then it suffices to find a
holomorphic function f on U such that <(f) = g on the boundary ∂U .

Now if H : U → V was a bijective conformal transformation which extends to
a homeomorphism H̄ : Ū → V̄ which thus takes ∂U homeomorphically to ∂V ,
then if f : V → C is holomorphic, so is f ◦ H. Thus in particular <(f ◦ H) is a
harmonic function on U . It follows that we can use conformal transformations to
transport solutions of Laplace’s equation from one domain to another: if we can use
a conformal transformation H to take a domain U to a domain V where we already
have a supply of holomorphic functions satisfying various boundary conditions, the
conformal transformation H gives us a corresponding set of holomorphic (and hence
harmonic) functions on U . We state this a bit more formally as follow:

Lemma 22.22. If U and V are domains and G : U → V is a conformal transfor-
mation, then if u : V → R is a harmonic function on V , the composition u ◦ G is
harmonic on U .

49This uses the chain rule for a composition g ◦ f of real-differentiable functions f : R → R2

and g : R2 → R, applied to the real and imaginary parts of the integrand. This follows in exactly

the same way as the proof of Lemma 23.7. See the remark after the proof of that lemma.
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Proof. To see that u◦G is harmonic we need only check this in a disk B(z0, r) ⊆ U
about any point z0 ∈ U . If w0 = G(z0), the continuity of G ensures we can find
δ, ε > 0 such that G(B(z0, δ)) ⊆ B(w0, ε) ⊆ V . But now since B(w0, ε) is simply-
connected we know by Lemma 22.21 we can find a holomorphic function f(z) with
u = <(f). But then on B(z0, δ) we have u ◦ G = <(f ◦ G), and by the chain rule
f ◦G is holomorphic, so that its real part is harmonic as required. �

Remark 22.23. You can also give a more direct computational proof of the above
Lemma. Note also that we only need G to be holomorphic – the fact that it is
a conformal equivalence is not necessary. On the other hand if we are trying to
produce harmonic functions with prescribed boundary values, then we will need to
use carefully chosen conformal transformations.

This strategy for studying harmonic functions might appear over-optimistic, in
that the domains one can obtain from a simple open set like B(0, 1) or the upper-
half plane H might consist of only a small subset of the open sets one might be
interested in. However, the Riemann mapping theorem (Theorem 22.17) show
that every domain which is simply connected, other than the whole complex plane
itself, is in fact conformally equivalent to B(0, 1). Thus a solution to the Dirichlet
problem for the disk at least in principal comes close50 to solving the same problem
for any simply-connected domain! For convenience, we will write D for the open
disk B(0, 1) of radius 1 centred at 0.

In the course so far, the main examples of conformal transformations we have
are the following:

(1) The exponential function is conformal everywhere, since it is its own deriv-
ative and it is everywhere nonzero.

(2) Mobius transformations understood as maps on the extended complex plane
are everywhere conformal.

(3) Fractional exponents: In cut planes the functions z 7→ zα for α ∈ C are
conformal (the cut removes the origin, where the derivative may vanish).

Let us see how to use these transformations to obtain solutions of the Laplace
equation. First notice that Cauchy’s integral formula suggests a way to produce
solutions to Laplace’s equation in the disk: Suppose that u is a harmonic function
defined on B(0, r) for some r > 1. Then by Lemma 22.21 we know there is a
holomorphic function f : B(0, r) → C such that u = <(f). By Cauchy’s integral
formula, if γ is a parametrization of the positively oriented unit circle, then for all
w ∈ B(0, 1) we have f(w) = 1

2πi

∫
γ
f(z)/(z − w)dz, and so

u(z) = <
( 1

2πi

∫
γ

f(z)dz

z − w
)
.

Since the integrand uses only the values of f on the boundary circle, we have
almost recovered the function u from its values on the boundary. (Almost, because
we appear to need the values of it harmonic conjugate). The next lemma resolves
this:

50The issue is whether the conformal equivalence behaves well enough at the boundaries.
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Lemma 22.24. If u is harmonic on B(0, r) for r > 1 then for all w ∈ B(0, 1) we
have

u(w) =
1

2π

∫ 2π

0

f(eiθ)
1− |w|2

|eiθ − w|2
dθ =

1

2π

∫ 2π

0

u(eiθ)<
(eiθ + w

eiθ − w
)
dθ.

Proof. (Sketch.) Take, as before, f(z) holomorphic with <(f) = u on B(0, r). Then
letting γ be a parametrization of the positively oriented unit circle we have

f(w) =
1

2πi

∫
γ

f(z)dz

z − w
− 1

2πi

∫
γ

f(z)dz

z − w̄−1

where the first term is f(w) by the integral formula and the second term is zero
because f(z)/(z − w̄−1) is holomorphic inside all of B(0, 1). Gathering the terms,
this becomes

f(w) =
1

2π

∫
γ

f(z)
1− |w|2

|z − w|2
dz

iz
=

1

2π

∫ 2π

0

f(eiθ)
1− |w|2

|eiθ − w|2
dθ.

The advantage of this last form is that the real and imaginary parts are now easy
to extract, and we see that

u(z) =

∫ 2π

0

u(eiθ)
1− |w|2

|eiθ − w|2
dθ.

Finally for the second integral expression note that if |z| = 1 then

z + w

z − w
=

(z + w)(z̄ − w̄)

|z − w|2
=

1− |w|2 + (z̄w − zw̄)

|z − w|2
.

from which one readily sees the real part agrees with the corresponding factor in
our first expression. �

Now the idea to solve the Dirichlet problem for the disk B(0, 1) is to turn this
previous result on its head: Notice that it tells us the values of u inside the disk
B(0, 1) in terms of the values of u on the boundary. Thus if we are given the
boundary values, say a (periodic) function G(eiθ) we might reasonably hope that
the integral

g(w) =
1

2π

∫ 2π

0

G(eiθ)
1− |w|2

|eiθ − w|2
dθ,

would define a harmonic function with the required boundary values. Indeed it
follows from the proof of the lemma that the integral is the real part of the integral

1

2πi

∫
γ

G(z)
1

z − w
dz,

which we know from Lemma 15.18 is holomorphic in w, thus g(w) is certainly
harmonic. It turns out that if w → w0 ∈ ∂B(0, 1) then provided G is continuous
at w0 then g(w)→ G(w0), hence g is in fact a harmonic function with the required
boundary value.
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23. Appendix I: some results from multivariable real analysis.

In this appendix we review some notions from multivariable calculus. While we
give careful proofs, only the statements are examinable.

23.1. Properties of the Limit Superior. We collect here some basic facts about
the lim sup of a sequence of real numbers. Recall the definition:

Definition 23.1. Let (an) be a sequence which is bounded above (if it is not, by
convention we set lim supn(an) = +∞). Then for each n we may set sn = sup{ak :
k ≥ n}. Clearly the sequence (sn) is decreasing, and so if it is bounded below it has
a limit, which we denote by lim supn(an). If the sequence sn is not bounded below,
it tends to −∞, and we write lim supn(an) = −∞. Note that lim supn(an) = −∞
if and only if an → −∞ as n→ −∞.

The following Lemma is helpful in understanding what the properties of the
lim sup.

Lemma 23.2. Let (an) be a sequence of real numbers which is bounded above and
let s = lim supn(an). If (ank) is any convergent subsequence of (an) with limit `
then ` ≤ s. Moreover, there exists a subsequence of (an) which converges to s, so
that lim supn(an) is the maximum value of the limit of a subsequence of (an).

Proof. For the first part, note that by definition clearly ank ≤ snk , and since (sn)
tends to s it follows the subsequence (snk) does also, hence since limits preserve
weak inequalities, limk(ank) = l ≤ s as required.

Let An = {am : m ≥ n ∈ N} be the set of values of the n-th tail of the sequence
(an). Then it is clear that sm is in Ān for each m ≥ n, and so s ∈ Ān for all n.
If s is a limit point of any An then by Lemma 10.26, s is a limit of a subsequence
of the tail (ak)k≥n. If this is not the case for all n, then we must have s ∈ An for
all n, hence s = am for infinitely many m. It follows that there is a subsequence of
(an) which is constant and equal to s, so certainly it converges to s.

�

We have the following basic property of lim sup, which we used in the discussion
of differentiation of power series:

Lemma 23.3. Suppose that (an) is a bounded sequence of real numbers. Then if
(cn) is a sequence which converges to c ≥ 0 then lim supn(cnan) = c. lim supn an.

Proof. If (ank) is any subsequence of (an) which converges to ` ∈ R, then clearly
cnkank → c.` as n→∞. Since c ≥ 0 it follows the result follows from the previous
lemma which shows that lim supn(cnan) is the maximum value of the limit of a
subsequence of (cnan). �

Remark 23.4. For sequences which are bounded below one may consider ln =
inf{ak : k ≥ n}. Clearly (ln) forms an increasing sequence and one sets lim infn(an) =
limn ln. It is easy to see that lim supn(an) = − lim infn(−an).

23.2. Partial derivatives and the total derivative.

Theorem 23.5. Suppose that F : U → R2 is a function defined on an open subset
of R2, whose partial derivatives exist and are continuous on U . Then for all z ∈ U
the function F is real-differentiable, with derivative Dfz given by the matrix of
partial derivative.
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Proof. Working component by component, you can check that it is in fact enough
to show that a function f : U → R with continuous partial derivatives ∂xf and ∂yf
has total derivative given by (∂xf, ∂yf) at each z ∈ U . That is, if z = (x, y) then

f(x+ h, y + k) = f(x, y) + ∂xf(x, y)h+ ∂yf(x, y)k + ‖(h, k)‖.ε(h, k),

where ε(h, k) → 0 as (h, k) → 0. But now since the function x 7→ f(x, y) is
differentiable at x with derivative ∂xf(x, y) we have

f(x+ h, y) = f(x, y) + ∂xf(x, y)h+ hε1(h)

where ε1(h) → 0 as h → 0. Now by the mean value theorem applied the function
to y 7→ f(x+ h, y) we have

f(x+ h, y + k) = f(x+ h, y) + ∂yf(x+ h, y + θ2k)k,

for some θ2 ∈ (0, 1). Thus using the definition of ∂xf(x, y) it follows that

f(x+ h, y + k) = f(x, y) + ∂xf(x, y)h+ hε1(h) + ∂yf(x+ h, y + θ2k)k.

Thus we have

f(x+ h, y + k) = f(x, y) + ∂xf(x, y)h+ ∂yf(x, y)k + ‖(h, k)‖ε(h, k),

where

ε(h, k) =
h√

h2 + k2
ε1(h) +

k√
h2 + k2

(∂yf(x+ h, y + θ2k)− ∂yf(x, y)).

Thus since 0 ≤ h/
√
h2 + k2, k/

√
h2 + k2 ≤ 1, the fact that ε1(h)→ 0 as h→ 0 and

the continuity of ∂yf at (x, y) imply that ε(h, k)→ 0 as (h, k)→ 0 as required. �

Remark 23.6. Note that in fact the proof didn’t use the full strength of the hypoth-
esis of the theorem – we only actually needed the existence of the partial derivatives
and the continuity of one of them at (x, y) to conclude that f is real-differentiable
at (x, y).

23.3. The Chain Rule. We establish a version of the chain rule which is needed
for the proof that the existence of a primitive for a function f : U → C implies that∫
γ
f(z)dz = 0 for every closed curve γ in U . The proof requires one to use the fact

that if dF/dt = f on U then f(γ(t))γ′(t) is the derivative of F (γ(t)). This is of
course formally exactly what one would expect using the formula for the normal
version of the chain rule, but one should be slightly careful: F : C→ C is a function
of a complex variable, while γ : [a, b] → C is a function of real variable, so we are
mixing real and complex differentiability.

That said, we have seen that a complex differentiable function is also differen-
tiable in the real sense, with its derivative being the linear map given by multipli-
cation by the complex number which is its complex derivative. Thus the result we
need follows from a version of the chain rule for real-differentiable functions:

Lemma 23.7. Let U be an open subset of R2 and let F : U → R2 be a differentiable
function. If γ : [a, b] → R is a (piecewise) C1-path with image in U , then F (γ(t))
is a differentiable function with

d

dt
(F (γ(t))) = DFγ(t)(γ

′(t))
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Proof. Let t0 ∈ [a, b] and let z0 = γ(t0) ∈ U . Then by definition, there is a function
ε(z) such that

F (z) = F (z0) +DFz0(z − z0) + |z − z0|ε(z),
where ε(z)→ 0 = ε(z0) as z → z0. But then

F (γ(t))− F (γ(t0))

t− t0
= DFz0(

γ(t)− γ(t0)

t− t0
) + ε(γ(t)).

|γ(t)− γ(t0)|
t− t0

.

But now consider the two terms on the right-hand side of this expression: for the
first term, note that a linear map is continuous, so since (γ(t)− γ(t0))/(t− t0) →
γ′(t0) as t → t0 we see that DFz0(γ(t)−γ(t0)

t−t0 ) → DFz0(γ′(t0)) as t → t0. On the

other hand, for the second term, since γ(t)−γ(t0)
t−t0 tends to γ′(t0) as t tends to t0, we

see that |γ(t)− γ(t0)|/(t− t0) is bounded as t→ t0, while since γ(t) is continuous
at t0 since it is differentiable there ε(γ(t)) → ε(γ(t0)) = ε(z0) = 0. It follows that
the second term tends to zero, so that the left-hand side tends to Dfγ(t0)(γ

′(t0))
as required. �

Remark 23.8. Notice that the proof above works in precisely the same way if F is a
function from R2 to R. Indeed a slight modification of the argument proves that if
F : Rn → Rm and G : Rm → Rp then if F and G are differentiable, their composite
G ◦ F is differentiable with derivative DGF (x) ◦DFx.

An easy application of the chain rule is the following constancy theorem. For the
proof it is convenient to introduce some terminology: We say a function f : X → Y
between metric spaces is locally constant if for any z ∈ X there is an r > 0 such that
f is constant on B(z, r). Clearly a locally constant function is continuous. Since for
any continuous function the pre-image of a point is a closed set, the pre-image of
point in the range of a locally-constant function is both open and closed. It follows
that if X is connected and f is locally constant then f is in fact constant.

Proposition 23.9. Suppose that f : U → R2 is a function defined on a connected
open subset of R2. Then if Dfz = 0 for all z ∈ U the function f is constant.

Proof. By the preceding remarks it suffices to show that f is locally constant. To
see this, let z0 ∈ U and fix r > 0 such that B(z0, r) ⊆ U . Then for any z ∈ B(z0, r)
we may consider the function F (t) = f(z0 + t(z − z0)), where t ∈ [0, 1]. Note that
F = f ◦ γ where γ(t) = z0 + t(z − z0) is the straight line-segment from z0 to z
which lies entirely in B(z0, r) as z does. Hence applying the chain rule we have
F ′(t) = Dfz0+t(z−z0)(z − z0) = 0 by our assumption on Dfz. It follows from the
Fundamental Theorem of Calculus that

f(z)− f(z0) = F (1)− F (0) =

∫ 1

0

F ′(t)dt = 0,

hence f is constant on B(z0, r) as required. (The integral of F ′(t) = (u′(t), v′(t))
is taken component-wise

�

23.4. Symmetry of mixed partial derivatives. We used in the proof that the
real and imaginary parts of a holomorphic function are harmonic the fact that
partial derivatives commute on twice continuously differentiable functions. We give
a proof of this for completeness. The key to the proof will be to use difference
operators:
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Definition 23.10. Let f : U → R be a function defined on an open set U ⊂ R2.
Then if s, t ∈ R\{0} let ∆s

1(f),∆t
2(f) be the function given by

∆s
1(f)(x, y) =

f(x+ s, y)− f(x, y)

s
, ∆t

2(f)(x, y) =
f(x, y + t)− f(x, y)

t

Note that if f is differentiable at (x, y) then ∂xf(x, y) = lims→0 ∆s
1(f)(x, y) and

∂yf(x, y) = limt→0 ∆t
2(f)(x, y).

It is straight-forward to check that

∆2
1(∆t

2(f))(x, y) = ∆t
2(∆s

1(f))(x, y)

=
f(x+ s, y + t)− f(x+ s, y)− f(x, y + t) + f(x, y)

st
.

That is, the two difference operators f 7→ ∆s
1(f) and f 7→ ∆t

2(f) commute with
each other. We wish to use this fact to deduce that the corresponding partial
differential operators also commute, but because of the limits involved, this will
not be automatic, and we will need to impose the additional hypotheses that the
second partial derivatives of f are continuous functions.

Since the difference operator ∆s
1 and ∆t

2 are linear, they commute with partial
differentiation so that ∂y∆s

1(f)(x, y) = ∆s
1(∂yf)(x, y), and similarly for ∂x and also

for ∆t
2 and ∂x, ∂y.

We are now ready to prove that mixed partial derivatives are equal:

Lemma 23.11. Suppose that f : U → R is twice continuously differentiable, so
that all its second partial derivatives exist and are continuous on U . Then

∂x∂yf = ∂y∂xf

on U .

Proof. Fix (x, y) ∈ U . Since U is open, there are ε, δ > 0 such that ∆s
1(f) and

∆t
2(f) are defined on B((x, y), ε) for all s, t with |s|, |t| < δ. Now by definition we

have
∂x∂yf(x, y) = ∂x(lim

t→0
∆t

2(f))(x, y) = lim
s→0

lim
t→0

∆s
1∆t

2(f)(x, y)

But now using the mean value theorem for ∆t
2(f) in the first variable, we see

that
∆s

1∆t
2(f)(x, y) = ∂x∆t

2f(x+ s1, y),

where s1 lies between 0 and s. But ∂x∆t
2(f)(x + s1, y) = ∆t

2∂xf(x + s1, y), and
using the mean value theorem for ∂xf(x+ s1, y) in the second variable we see that
∆t

2∂xf(x + s1, y) = ∂y∂xf(x + s1, y + t1) where t1 lies between 0 and t (and note
that t1 depends both on t and s1).

But now

∂x∂yf(x, y) = lim
s→0

lim
t→0

∂y∂xf(x+ s1, y + t1) = ∂y∂xf(x, y),

by the continuity of the second partial derivatives, so we are done.
�
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24. Appendix II: On the homotopy and homology versions of Cauchy’s
theorem

In this appendix we give proofs of the homotopy and homology versions of
Cauchy’s theorem which are stated in the body of the notes. These proofs are
non-examinable, but are included for the sake of completeness.

Theorem 24.1. Let U be a domain in C and a, b ∈ U . Suppose that γ and η
are paths from a to b which are homotopic in U and f : U → C is a holomorphic
function. Then ∫

γ

f(z)dz =

∫
η

f(z)dz.

Proof. The key to the proof of this theorem is to show that the integrals of f along
two paths from a to b which “stay close to each other” are equal. We show this
by covering both paths by finitely many open disks and using the existence of a
primitive for f in each of the disks.

More precisely, suppose that h : [0, 1]× [0, 1] is a homotopy between γ and η. Let
us write K = h([0, 1] × [0, 1]) be the image of the map h, a compact subset of U .
By Lemma 10.33 there is an ε > 0 such that B(z, ε) ⊆ U for all z ∈ K.

Next we use the fact that, since [0, 1]×[0, 1] is compact, h is uniformly continuous.
Thus we may find a δ > 0 such that |h(t1, s1)− h(t2, w2)| < ε whenever ‖(t1, s1)−
(t2, s2)‖ < δ. Now pick N ∈ N such that 1/N < δ and dissect the square [0, 1]×[0, 1]
into N2 small squares of side length 1/N . For convenience, we will write ti = i/N
for i ∈ {0, 1, . . . , N}

For each k ∈ {1, 2, . . . , N−1}, let νk be the piecewise linear path which connects
the point h(tj , k/N) to h(tj+1, k/N) for each j ∈ {0, 1, . . . , N). Explicitly, for
t ∈ [tj , tj+1], we set

νk(t) = h(tj , k/N)(1−Nt− j) + h(tj+1, k/N)(Nt− j)

We claim that∫
γ

f(z)dz =

∫
ν1

f(z)dz =

∫
ν2

f(z)dz = . . . =

∫
νN−1

f(z)dz =

∫
η

f(z)dz

which will prove the theorem. In fact, we will only show that
∫
γ
f(z)dz =

∫
ν1
f(z)dz,

since the other cases are almost identical.
We may assume the numbering of our squares Si is such that S1, . . . , SN list

the bottom row of our N2 squares from left to right. Let mi be the centre of the
square Si and let pi = h(mi). Then h(Si) ⊆ B(pi, ε) so that γ([ti, ti+1]) ⊆ B(pi, ε)
and ν1([ti, ti+1]) ⊆ B(pi, ε) (since B(pi, ε) is convex and by assumption contains
ν1(ti) and ν1(ti+1)). Since B(pi, ε) is convex, f has primitive Fi on each B(pi, ε).
Moreover, as primitives of f on a domain are unique up to a constant, it follows
that Fi and Fi+1 differ by a constant on B(pi, ε) ∩B(pi+1, ε), where they are both
defined. In particular, since γ(ti), ν1(ti) ∈ B(pi, ε) ∩ B(pi+1, ε), (1 ≤ i ≤ N − 1),
we have

(24.1) Fi(γ(ti))− Fi+1(γ(ti)) = Fi(ν1(ti))− Fi+1(ν1(ti)).
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Figure 4. Dissecting the homotopy

Now by the Fundamental Theorem we have∫
γ|[ti,ti+1]

f(z)dz = Fi(γ(ti+1))− Fi(γ1(ti)),∫
ν1|[ti,ti+1]

f(z)dz = Fi(ν1(ti+1))− Fi(ν1(ti))

Combining we find that:∫
γ

f(z)dz =

N−1∑
i=0

∫
γ|[ti,ti+1]

f(z)dz

=
N−1∑
i=0

(
Fi+1(γ(ti+1))− Fi+1(γ(ti))

)
= FN (γ(tN ))− F1(γ(0)) +

N−1∑
i=1

(
Fi(γ(ti))− Fi+1(γ(ti))

)
= FN (b)− F0(a) +

(N−1∑
i=0

(Fi(ν1(ti+1))− Fi+1(ν1(ti+1)
)

=

N−1∑
i=0

(
(Fi+1(ν1(ti+1))− Fi+1(ν1(ti))

)
=

N−1∑
i=0

∫
ν1|[ti,ti+1]

f(z)dz =

∫
ν1

f(z)dz

where in the fourth equality we used Equation (24.1).
�
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Remark 24.2. The use of the piecewise linear paths νk might seem unnatural –
it might seem simpler to use the paths given by the homotopy, that is the paths
γk(t) = h(t, k/N). The reason we did not do this is because we only assume that h
is continuous, so we do not know that the path γk is piecewise C1 which we need
in order to be able to integrate along it.

The proof of the homology form of Cauchy’s theorem uses Liouville’s theorem,
which we proved using Cauchy’s theorem for a disc.

Theorem 24.3. Let f : U → C be a holomorphic function and let γ : [0, 1]→ U be
a closed path whose inside lies entirely in U , that is I(γ, z) = 0 for all z /∈ U . Then
we have, for all z ∈ U\γ∗,∫

γ

f(ζ)dζ = 0;

∫
γ

f(ζ)

ζ − z
dζ = 2πiI(γ, z)f(z), ∀z ∈ U\γ∗.

Moreover, if U is simply-connected and γ : [a, b] → U is any closed path, then
I(γ, z) = 0 for any z /∈ U , so the above identities hold for all closed paths in such
U .

Proof. We first prove the general form of the integral formula. Note that using the
integral formula for the winding number and rearranging, we wish to show that

F (z) =

∫
γ

f(ζ)− f(z)

ζ − z
dζ = 0

for all z ∈ U\γ∗. Now if g(ζ, z) = (f(ζ) − f(z))/(ζ − z), then since f is complex
differentiable, g extends to a continuous function on U × U if we set g(z, z) =
f ′(z). Thus the function F is in fact defined for all z ∈ U . Moreover, if we fix ζ
then, by standard properties of differentiable functions, g(ζ, z) is clearly complex
differentiable as a function of z everywhere except at z = ζ. But since it extends
to a continuous function at ζ, it is bounded near ζ, hence by Riemann’s removable
singularity theorem, z 7→ g(ζ, z) is in fact holomorphic on all of U . It follows by
Theorem 15.27 that

F (z) =

∫ 1

0

g(γ(t), z)γ′(t)dt

is a holomorphic function of z.
Now let ins(γ) = {z ∈ C : I(γ, z) 6= 0} be the inside of γ, so by assumption we

have ins(γ) ⊂ U , and let V = C\(γ∗ ∪ ins(γ)) be the complement of γ∗ and its
inside. If z ∈ U ∩ V , that is, z ∈ U but not inside γ or on γ∗, then

F (z) =

∫
γ

f(ζ)dζ

ζ − z
− f(z)

∫
γ

dζ

ζ − z

=

∫
γ

f(ζ)dζ

ζ − z
− f(z)I(γ, z)

=

∫
γ

f(ζ)dζ

ζ − z
= G(z)

since I(γ, z) = 0. Now G(z) is an integral which only involves the values of f on
γ∗ hence it is defined for all z /∈ γ∗, and by Theorem 15.27, G(z) is holomorphic.
In particular G defines a holomorphic function on V , which agrees with F on all
of U ∩ V , and thus gives an extension of F to a holomorphic function on all of C.
(Note that by the above, F and G will in general not agree on the inside of γ.)
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Indeed if we set H(z) = F (z) for all z ∈ U and H(z) = G(z) for all z ∈ V then
H is a well-defined holomorphic function on all of C. We claim that |H| → 0 as
|z| → ∞, so that by Liouville’s theorem, H(z) = 0, and so F (z) = 0 as required.
But since ins(γ) is bounded, there is an R > 0 such that V ⊇ C\B(0, R), and so
H(z) = G(z) for |z| > R. But then setting M = supζ∈γ∗ |f(ζ)| we see

|H(z)| =
∣∣∣∣∫
γ

f(ζ)dζ

ζ − z

∣∣∣∣ ≤ `(γ).M

|z| −R
.

which clearly tends to zero as |z| → ∞, hence |H(z)| → 0 as |z| → ∞ as required.
For the second formula, simply apply the integral formula to g(z) = (z−w)f(z)

for any w /∈ γ∗. Finally, to see that if U is simply-connected the inside of γ always
lies in U , note that if w /∈ U then 1/(z − w) is holomorphic on all of U , and so
I(γ,w) =

∫
γ

dz
z−w = 0 by the homotopy form of Cauchy’s theorem. �

Remark 24.4. It is often easier to check a domain is simply-connected than it is to
compute the interior of a path. Note that the above proof uses Liouville’s theorem,
whose proof depends on Cauchy’s Integral Formula for a circular path, which was a
consequence of Cauchy’s theorem for a triangle, but apart from the final part of the
proof on simply-connectd regions, we did not use the more sophisticated homotopy
form of Cauchy’s theorem. We have thus established the winding number and
homotopy forms of Cauchy’s theorem essentially independently of each other.
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25. Appendix III: Remark on the Inverse Function Theorem

In this appendix we supply51 the details for the claim made in the remark after
the proof of the holomorphic version of the inverse function theorem.

There is an enhancement of the Inverse Function Theorem in the holomorphic
setting, which shows that the condition f ′(z) 6= 0 is automatic (in contrast to the
case of real differentiable functions, where it is essential as one sees by considering
the example of the function f(x) = x3 on the real line). Indeed suppose that
f : U → C is a holomorphic function on an open subset U ⊂ C, and that we have
z0 ∈ U such that f ′(z0) = 0.
Claim: In this case, f is at least 2 to 1 near z0, and hence is not injective.

Proof of Claim: If we let w0 = f(z0) and g(z) = f(z) − w0, it follows g has a
zero at z0, and thus it is either identically zero on the connected component of
U containing z0 (in which case it is very far from being injective!) or we may
write g(z) = (z − z0)kh(z) where h(z) is holomorphic on U and h(z0) 6= 0. Our
assumption that f ′(z0) = 0 implies that k, the multiplicity of the zero of g at z0 is
at least 2.

Now since h(z0) 6= 0, we have ε = |h(z0)| > 0 and hence by the continuity of h
at z0 we may find a δ > 0 such that h(B(z0, δ)) ⊆ B(h(z0), ε). But then by taking
a cut along the ray {−t.h(z0) : t ∈ R>0} we can define a holomorphic branch of
z 7→ z1/k on the whole of B(h(z0), ε). Now let φ : B(z0, δ)→ C be the holomorphic
function given by φ(z) = (z − z0).h(z)1/k (where by our choice of δ this is well-
defined) so that φ′(z0) = h(z0)1/k 6= 0. Then clearly f(z) = w0 +φ(z)k on B(z0, δ).
Since φ(z) is holomorphic,the open mapping theorem ensures that φ(B(z0, δ)) is an
open set, which since it contains 0 = φ(z0), contains B(0, r) for some r > 0. But
then since z 7→ zk is k-to-1 as a map from B(0, r)\{0} → B(0, rk)\{0} it follows
that f takes every value in B(w0, r

k)\{w0} at least k times.

51For interest, not examination!
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26. Appendix IV: Bernoulli numbers and the ζ-function

For interest only: non-examinable.
We define the Bernoulli numbers via the power series expansion of B(z) =

z/(ez − 1) at the origin:

(26.1)
z

ez − 1
=

∞∑
n=0

Bn
n!
zn,

where since B(z) is defined in B(0, 2π), by Taylor’s theorem the power series has
radius of convergence 2π. Since (ez − 1)/z =

∑∞
n=0 z

n/(n+ 1)!, we can rewrite the
definition as: ( ∞∑

n=0

zn

(n+ 1)!

)( ∞∑
m=0

Bm
m!

zm

)
= 1.

It follows that B0 = 1 and for n ≥ 1 we have
n∑
k=0

1

k!(n− k + 1)!
Bk = 0,

or, in terms of binomial coefficients,
n∑
k=0

(
n+ 1

k

)
Bk = 0.

Thus we can recursively compute the Bk: for example B0 = 1, B1 = −1/2, B2 =
1/6, B3 = 0, B4 = −1/30, B5 = 0. (In fact B2n+1 = 0 for all n > 1).

The reason we are interested in the Bernoulli numbers is that they arise when
one computes the value of the ζ-function ζ(s) =

∑∞
n=1 n

−s at s = 2k a positive
even integer. Using suitable square contours ΓN , we showed that the value of ζ(2)
is −π2R1 where R1 is the residue of cot(πz)/z2 at the origin (since the residues of

cot(πz)/z2 at the non-zero integers are 1
πn2 ). Exactly the same strategy, using the

function cot(πz)/z2k, shows that ζ(2k) is equal to −π2Rk where Rk is the coefficient

of z2k−1 in the Laurent expansion of cot(πz). But we have

cot(πz) =
cos(πz)

sin(πz)
= i

eiπz + e−iπz

eiπz − e−iπz
= i

e2iπz + 1

e2iπz − 1

= i

(
1 +

2

e2πiz − 1

)
= i+

1

πiz
B(2πiz)

= i+

∞∑
k=0

Bk
k!

(2i)k(πz)k−1,

thus it follows that

ζ(2k) = −π
2

Bk
k!

22k(−1)k(π)2k−1 = (−1)k+1 22k−1π2kB2k

(2k)!


